Literatura académica sobre el tema "Building environmental impact"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Building environmental impact".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Building environmental impact"
Yang, Inmog y Mingu Jun. "A Life Cycle Approach for Environmental Assessment of Buildings". Korean Journal of Life Cycle Assessment 2, n.º 1 (agosto de 2000): 33–41. http://dx.doi.org/10.62765/kjlca.2000.2.1.33.
Texto completoJanjua, Shahana, Prabir Sarker y Wahidul Biswas. "Impact of Service Life on the Environmental Performance of Buildings". Buildings 9, n.º 1 (2 de enero de 2019): 9. http://dx.doi.org/10.3390/buildings9010009.
Texto completoMastellone, Margherita, Silvia Ruggiero, Dimitra Papadaki, Nikolaos Barmparesos, Anastasia Fotopoulou, Annarita Ferrante y Margarita Niki Assimakopoulos. "Energy, Environmental Impact and Indoor Environmental Quality of Add-Ons in Buildings". Sustainability 14, n.º 13 (22 de junio de 2022): 7605. http://dx.doi.org/10.3390/su14137605.
Texto completoMoňoková, Andrea y Silvia Vilčeková. "Sustainable Construction - Environmental Impacts Assessment of Architectural Elements and Building Services". International Journal of Engineering Research in Africa 47 (marzo de 2020): 77–83. http://dx.doi.org/10.4028/www.scientific.net/jera.47.77.
Texto completoRastogi, Rishabh y Sushil Kumar Solanki. "Environmental Impact Analysis of Functional Retrofitting Measures in Buildings". Journal of Sustainable Architecture and Civil Engineering 32, n.º 1 (22 de junio de 2023): 172–85. http://dx.doi.org/10.5755/j01.sace.32.1.30374.
Texto completoOndová, Marcela, Adriana Eštoková y Martina Fabianová. "Reducing the carbon footprint in the foundations structures of masonry family houses". Selected Scientific Papers - Journal of Civil Engineering 15, n.º 2 (1 de diciembre de 2020): 55–62. http://dx.doi.org/10.1515/sspjce-2020-0018.
Texto completoNwokocha, Geraldine Chika. "Environmental Impact Resulting from Unplanned Building in Nigeria". International Journal of Membrane Science and Technology 10, n.º 1 (2 de noviembre de 2023): 1622–30. http://dx.doi.org/10.15379/ijmst.v10i1.3007.
Texto completoMouton, L., D. Ramon, D. Trigaux, K. Allacker y R. H. Crawford. "Preliminary study on the use of Big Data for environmental benchmarks of residential buildings in Flanders". IOP Conference Series: Earth and Environmental Science 1196, n.º 1 (1 de junio de 2023): 012114. http://dx.doi.org/10.1088/1755-1315/1196/1/012114.
Texto completoLim, Hyojin, Sungho Tae y Seungjun Roh. "Major Building Materials in Terms of Environmental Impact Evaluation of School Buildings in South Korea". Buildings 12, n.º 4 (16 de abril de 2022): 498. http://dx.doi.org/10.3390/buildings12040498.
Texto completoBangwal, Deepak y Prakash Tiwari. "Environmental design and awareness impact on organization image". Engineering, Construction and Architectural Management 26, n.º 1 (18 de febrero de 2019): 29–45. http://dx.doi.org/10.1108/ecam-02-2017-0029.
Texto completoTesis sobre el tema "Building environmental impact"
Київ, Вікторія Олегівна. "Environmental Impact Assessment when Building Materials Open Mining". Thesis, Національний авіаційний університет, 2020. https://er.nau.edu.ua/handle/NAU/49659.
Texto completoObject of research – Horodenkivske deposit of brick raw materials in Ivano-Frankivsk region, as a threat to the ecology of society, mining industry. Aim оf work – assessment of technogenic loads and the analysis of ecological safety. Mehods of research: estimation by type and amount of expected waste, emissions (discharges), water, air, soil and subsoil pollution, noise, vibration, light, heat and radiation pollution, as well as radiation resulting from preparatory and construction work and planned activities.
Київ, Вікторія Олегівна. "Environmental Impact Assessment when Building Materials Open Mining". Thesis, Національний авіаційний університет, 2020. http://er.nau.edu.ua/handle/NAU/43484.
Texto completoObject of research – Horodenkivske deposit of brick raw materials in Ivano-Frankivsk region, as a threat to the ecology of society, mining industry. Aim оf work – assessment of technogenic loads and the analysis of ecological safety. Mehods of research: estimation by type and amount of expected waste, emissions (discharges), water, air, soil and subsoil pollution, noise, vibration, light, heat and radiation pollution, as well as radiation resulting from preparatory and construction work and planned activities.
Joshi, Surabhi. "Guidelines to integrate life cycle assessment in building design". Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31791.
Texto completoCommittee Chair: Augenbroe, Godfried; Committee Member: Bayer, Charlene; Committee Member: Gentry, Russell. Part of the SMARTech Electronic Thesis and Dissertation Collection.
De, Wolf Catherine (Catherine Elvire Lieve). "Material quantities in building structures and their environmental impact". Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/91298.
Texto completoThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 75-84).
Improved operational energy efficiency has increased the percentage of embodied energy in the total life cycle of building structures. Despite a growing interest in this field, practitioners lack a comprehensive survey of material quantities and embodied carbon in building structures. This thesis answers the key question: "What is the embodied carbon of different structures?" Three primary techniques are used: (1) a review of existing tools and literature; (2) a collaboration with a worldwide network of design firms through conversations with experts and (3) the creation of a growing interactive database containing the material efficiency and embodied carbon of thousands of buildings. The first contribution of this thesis is to define challenges and opportunities in estimating greenhouse gas emissions of structures, expressed in carbon dioxide equivalent (CO₂e). Two key variables are analyzed: material quantities (kgmaterial/m² or kgm/m²) and Embodied Carbon Coefficients (ECC, expressed in kgCO2e/kgm). The main challenges consist of creating incentives for sharing data, identifying accurate ECCs and resolving transparency while protecting intellectual ownership. The main opportunities include using Building Information Models to generate data, proposing regional ECCs and outlining a unified carbon assessment method. The second contribution is the development of an interactive online tool, called deQo (database of embodied Quantity outputs), to provide reliable data about the Global Warming Potential of buildings (GWP, measured in kgCO2e/m² and obtained by multiplying the two key variables). Given the need for a long-term initiative, a framework is offered to create an interactive, growing online database allowing architects, engineers and researchers to input and compare their projects. The third contribution is the survey of 200 existing buildings obtained through deQo. Two general conclusions result from this survey of building structures: material quantities typically range from 500 to 1500 kg/m² and the GWP typically ranges between 200 and 700 kgCO2e/m2. Conclusions from this survey include that healthcare buildings use more materials whereas office buildings have a lower impact. Additionally, specific case studies on stadia, bridges and skyscrapers demonstrate that the design approach can have a significant impact on the embodied carbon of building structures. Ultimately, this thesis enables benchmarking of the environmental impact of building structure
by Catherine De Wolf.
S.M. in Building Technology
Darle, Maria, Saga Lindqvist y Bezawit Tsegai. "The climate impact of different building systems : A study regarding materials in residential buildings and their environmental impact". Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-390024.
Texto completoBertolini, Mattia. "Upcycling Shipping Containers as Building Components : an environmental impact assessment". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/15146/.
Texto completoNirmal, Deepika. "Environmental and Cost impact Analysis of Materials and Assemblies in Building Construction". FIU Digital Commons, 2012. http://digitalcommons.fiu.edu/etd/643.
Texto completoChang, Hsu-huan Sharon y 張舒環. "The impact of building design on environmental performance of propertymanagement company". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B42576933.
Texto completoRobinson-Gayle, Syreeta. "Environmental impact and performance of transparent building envelope materials and systems". Thesis, Brunel University, 2003. http://bura.brunel.ac.uk/handle/2438/5445.
Texto completoChang, Hsu-huan Sharon. "The impact of building design on environmental performance of property management company". Click to view the E-thesis via HKUTO, 2002. http://sunzi.lib.hku.hk/hkuto/record/B42576933.
Texto completoLibros sobre el tema "Building environmental impact"
Environmental impact of metals. Garston, Watford: IHS BRE Press, 2013.
Buscar texto completoHastings College of the Law., ed. Golden Gate building: Final environmental impact report. [San Francisco, Calif.]: The College, 1987.
Buscar texto completoEnvironmental impact of biomaterials and biomass. Bracknell, Berkshire: IHS BRE Press, 2014.
Buscar texto completoT, Brantley Ruth, ed. Building materials technology: Structural performance and environmental impact. New York: McGraw-Hill, 1996.
Buscar texto completoSan Francisco (Calif.). Dept. of City Planning., ed. San Francisco Courts Building: Draft, environmental impact report. [San Francisco]: Department of City Planning, 1994.
Buscar texto completoSan Francisco (Calif.). Dept. of City Planning., ed. San Francisco Courts Building: Final, environmental impact report. [San Francisco]: The Dept., 1994.
Buscar texto completoUnited States. General Services Administration. Region 9. Final environmental impact statement/environmental impact report (FEIS/EIR) for the San Francisco Federal Building. San Francisco, Calif: The Administration, 1997.
Buscar texto completoUnited States. General Services Administration. Region 9. Draft environmental impact statement/environmental impact report (DEIS/EIR) for the San Francisco Federal Building. San Francisco, Calif: The Administration, 1996.
Buscar texto completoBuilding a low impact roundhouse. East Moen, Hampshire, [England]: Permanent Publications, 2001.
Buscar texto completoSan Francisco (Calif.). Dept. of City Planning., ed. 235 Pine Street office building: [draft] environmental impact report. San Francisco: The Dept., 1986.
Buscar texto completoCapítulos de libros sobre el tema "Building environmental impact"
Johnson, Stuart. "Building Materials". En Greener Buildings Environmental impact of property, 89–103. London: Macmillan Education UK, 1993. http://dx.doi.org/10.1007/978-1-349-22752-5_6.
Texto completoMéquignon, Marc y Hassan Ait Haddou. "Building and Sustainable Development". En Lifetime Environmental Impact of Buildings, 25–43. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06641-7_2.
Texto completoSingh, Jagjit. "Building Biology and Health". En Greener Buildings Environmental impact of property, 122–43. London: Macmillan Education UK, 1993. http://dx.doi.org/10.1007/978-1-349-22752-5_8.
Texto completoBalta, M. Tolga, Ibrahim Dincer y Arif Hepbasli. "Environmental Impact Assessment of Building Energy Systems". En Causes, Impacts and Solutions to Global Warming, 1077–89. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7588-0_59.
Texto completoTorres-Quezada, Jefferson Eloy, Tatiana Sánchez-Quezada y Gilda Vélez-Romero. "Construction Development, Economic Evolution, and Environmental Impact in Ecuador". En Energetic Characterization of Building Evolution, 79–100. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-21598-8_3.
Texto completoMalik, Junaid Ahmad. "Impact of Heavy Metals from Building and Constructive Materials on Aquatic Environment". En Environmental and Human Impact of Buildings, 275–92. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-57418-5_10.
Texto completoBrata, Silviana, Raul Catalin Ene, Daniel Dan y Iosif Boros. "Life Cycle Assessment, an Integrated Vision to Energy Efficiency in the Building Industry". En Environmental and Human Impact of Buildings, 313–40. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-57418-5_12.
Texto completoPomè, Alice Paola, Chiara Tagliaro y Andrea Ciaramella. "Sustainable Workplace: Space Planning Model to Optimize Environmental Impact". En The Urban Book Series, 157–66. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-29515-7_15.
Texto completoAdupa, Vivek Raj, Suchith Reddy Arukala y Srikanth Maheswaram. "Environmental Impact Assessment of Residential Building – A Case Study". En Structural Integrity, 39–50. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05509-6_3.
Texto completoSchau, Erwin M., Eva Prelovšek Niemelä, Aarne Johannes Niemelä, Tatiana Abaurre Alencar Gavric y Iztok Šušteršič. "Life Cycle Assessment Benchmark for Wooden Buildings in Europe". En Towards a Sustainable Future - Life Cycle Management, 143–54. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77127-0_13.
Texto completoActas de conferencias sobre el tema "Building environmental impact"
Allacker, K., D. Trigaux y F. De Troyer. "An approach for handling environmental and economic conflicts in the context of sustainable building". En ENVIRONMENTAL IMPACT 2014. Southampton, UK: WIT Press, 2014. http://dx.doi.org/10.2495/eid140071.
Texto completoLapinskienė, Vilūnė, Violeta Motuzienė, Rasa Džiugaitė-Tumėnienė y Rūta Mikučionienė. "Impact of Internal Heat Gains on Building’s Energy Performance". En Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.265.
Texto completoZhou, Qifeng, Hao Zhou, Yimin Zhu y Tao Li. "Data-driven solutions for building environmental impact assessment". En 2015 IEEE International Conference on Semantic Computing (ICSC). IEEE, 2015. http://dx.doi.org/10.1109/icosc.2015.7050826.
Texto completoKIM, Ki-cheol, Deuk-woo KIM, Ji-eun KANG y Cheol-soo PARK. "Cognitive Response Of Occupants To Indoor Environmental Information And Its Impact On Simulation". En 2017 Building Simulation Conference. IBPSA, 2013. http://dx.doi.org/10.26868/25222708.2013.1104.
Texto completoFerroni, Sibilla, Martina Ferrando y Francesco Causone. "Environmental impact assessment of renewable energy communities: the analysis of an Italian neighbourhood". En 2023 Building Simulation Conference. IBPSA, 2023. http://dx.doi.org/10.26868/25222708.2023.1544.
Texto completoBocco, Andrea y Martina Bocci. "Reflections on the Environmental Impact of 'Vegetarian' Buildings, and on the Reliability of Databases". En 4th International Conference on Bio-Based Building Materials. Switzerland: Trans Tech Publications Ltd, 2022. http://dx.doi.org/10.4028/www.scientific.net/cta.1.395.
Texto completoMILETIĆ, GERAN-MARKO, MATEA MILAK y MATEO ŽANIĆ. "BUILDING COMMUNITY TRUST IN THE PROCESS OF ESTABLISHING A LOW- AND INTERMEDIATE-LEVEL RADIOACTIVE WASTE STORAGE FACILITY: THE CASE OF CROATIA". En WASTE MANAGEMENT AND ENVIRONMENTAL IMPACT 2022. Southampton UK: WIT Press, 2022. http://dx.doi.org/10.2495/wmei220131.
Texto completoLeón, Iñigo, Xabat Oregi, Cristina Marieta, Alba Juncal Arias y Lara Mabe. "Evaluation of different refurbishment or improvement strategies to reduce the environmental impact of University campuses". En 2021 Building Simulation Conference. KU Leuven, 2021. http://dx.doi.org/10.26868/25222708.2021.30780.
Texto completoGRINEVIČIŪTĖ, Monika y Kęstutis VALANČIUS. "Renewable and non-renewable primary energy factors for Lithuanian A++ buildings’ heating". En 12th International Conference “Environmental Engineering”. VILNIUS TECH, 2023. http://dx.doi.org/10.3846/enviro.2023.892.
Texto completoMaayan Tardif, Jalomi, Vasco Medici y Pierryves Padey. "Dynamic life cycle assessment of electricity demand of buildings with storage systems – potential for environmental impact mitigation". En 2021 Building Simulation Conference. KU Leuven, 2021. http://dx.doi.org/10.26868/25222708.2021.30144.
Texto completoInformes sobre el tema "Building environmental impact"
Zygmunt, Marcin y Dariusz Gawin. Residents' thermal comfort and energy performance of a single-family house in Poland: a parametric study. Department of the Built Environment, 2023. http://dx.doi.org/10.54337/aau541595604.
Texto completoYana Motta, Samuel, Bo Shen, Zhenning Li, Edward Vineyard y Brian Fricke. Building Technologies Office 03.02.02.38 Milestone Report— Technology Options for Low Environmental Impact Air-Conditioning and Refrigeration Systems. Office of Scientific and Technical Information (OSTI), agosto de 2023. http://dx.doi.org/10.2172/1996644.
Texto completoBjelland, David y Bozena Dorota Hrynyszyn. Energy retrofitting of non-residential buildings with effects on the indoor environment: a study of university buildings at NTNU in Trondheim, Norway. Department of the Built Environment, 2023. http://dx.doi.org/10.54337/aau541564763.
Texto completoBaldwin, Gunnar. Approaches to Environmental Licensing and Compliance in Caribbean Countries. Inter-American Development Bank, julio de 2016. http://dx.doi.org/10.18235/0007027.
Texto completoZhylenko, Tetyana I., Ivan S. Koziy, Vladyslav S. Bozhenko y Irina A. Shuda. Using a web application to realize the effect of AR in assessing the environmental impact of emissions source. [б. в.], noviembre de 2020. http://dx.doi.org/10.31812/123456789/4408.
Texto completoGonzalez Diez, Verónica M. Ex post Evaluation of the Impact of the Environmental Mitigation Measures for the Porce II Hydroelectric Power Plant Project. Inter-American Development Bank, febrero de 2011. http://dx.doi.org/10.18235/0010451.
Texto completoLevkoe, Charles Z., Peter Andrée, Patricia Ballamingie, Nadine A. Changfoot y Karen Schwartz. Building Action Research Partnerships for Community Impact: Lessons From a National Community-Campus Engagement Project. Community First: Impacts of Community Engagement Project, 2023. http://dx.doi.org/10.22215/fp/cfice/2023.12701.
Texto completoN. Final Environmental Impact Statement for the Chemistry and Metallurgy Research Building Replacement Project at Los Alamos National Laboratory, Los Alamos, New Mexico. Office of Scientific and Technical Information (OSTI), noviembre de 2003. http://dx.doi.org/10.2172/823235.
Texto completoN. Draft Environmental Impact Statement for the Chemistry and Metallurgy Research Building Replacement Project at Los Alamos National Laboratory, Los Alamos, New Mexico. Office of Scientific and Technical Information (OSTI), mayo de 2003. http://dx.doi.org/10.2172/823250.
Texto completoCoulson, Saskia, Melanie Woods, Drew Hemment y Michelle Scott. Report and Assessment of Impact and Policy Outcomes Using Community Level Indicators: H2020 Making Sense Report. University of Dundee, 2017. http://dx.doi.org/10.20933/100001192.
Texto completo