Artículos de revistas sobre el tema "Buckled Thin Film Transistor"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Buckled Thin Film Transistor.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Buckled Thin Film Transistor".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Cantarella, Giuseppe, Christian Vogt, Raoul Hopf, Niko Münzenrieder, Panagiotis Andrianakis, Luisa Petti, Alwin Daus et al. "Buckled Thin-Film Transistors and Circuits on Soft Elastomers for Stretchable Electronics". ACS Applied Materials & Interfaces 9, n.º 34 (21 de agosto de 2017): 28750–57. http://dx.doi.org/10.1021/acsami.7b08153.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Aoyama, Takashi, Genshiro Kawachi, Yasuhiro Mochizuki y Takaya Suzuki. "Effect of Ion Doping Process on Thin-Film Transistor Characteristics Using a Bucket-Type Ion Source and XeCl Excimer Laser Annealing". Japanese Journal of Applied Physics 31, Part 1, No. 4 (15 de abril de 1992): 1012–15. http://dx.doi.org/10.1143/jjap.31.1012.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Horng. "Thin Film Transistor". Crystals 9, n.º 8 (9 de agosto de 2019): 415. http://dx.doi.org/10.3390/cryst9080415.

Texto completo
Resumen
The special issue is "Thin Film Transistor". There are eight contributed papers. They focus on organic thin film transistors, fluorinated oligothiophenes transistors, surface treated or hydrogen effect on oxide-semiconductor-based thin film transistors, and their corresponding application in flat panel displays and optical detecting. The present special issue on “Thin Film Transistor” can be considered as a status report reviewing the progress that has been made recently on thin film transistor technology. These papers can provide the readers with more research information and corresponding application potential about Thin Film Transistors.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Choi, Kwangsoo y Masakiyo Matsumura. "Semi-Insulating Polysilicon Thin-Film Transistor: A Proposed Thin-Film Transistor". Japanese Journal of Applied Physics 34, Part 1, No. 7A (15 de julio de 1995): 3497–99. http://dx.doi.org/10.1143/jjap.34.3497.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

YASE, Kiyoshi. "Organic Thin Film Transistor". Kobunshi 53, n.º 2 (2004): 85–88. http://dx.doi.org/10.1295/kobunshi.53.85.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

IÑIGUEZ, BENJAMIN, TOR A. FJELDLY y MICHAEL S. SHUR. "THIN-FILM TRANSISTOR MODELING". International Journal of High Speed Electronics and Systems 09, n.º 03 (septiembre de 1998): 703–23. http://dx.doi.org/10.1142/s0129156498000300.

Texto completo
Resumen
We review recent physics-based, analytical DC models for amorphous silicon (a-Si), polysilicon (poly-Si), and organic thin film transistors (TFTs), developed for the design of novel ultra high-resolution, large area displays using advanced short-channel TFTs. In particular, we emphasize the modeling issues related to the main short-channel effects, such as self-heating (a-Si TFTs) and kink effect (a-Si and poly-Si TFTs), which are present in modern TFTs. The models have been proved to accurately reproduce the DC characteristics of a-Si:H with gate lengths down to 4 μm and poly-Si TFTs with gate lengths down to 2 μm. Because the scalability of the models and the use of continuous expressions for describing the characteristics in all operating regimes, the models are suitable for implementation in circuit simulators such as SPICE.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Pavelko, Vitalijs. "Behavior of Thin-Film-Type Delamination of Layered Composite in Post-Buckling". Advanced Materials Research 774-776 (septiembre de 2013): 1312–21. http://dx.doi.org/10.4028/www.scientific.net/amr.774-776.1312.

Texto completo
Resumen
A revision of the basic assumptions those are usually used in the analysis of stability of thin delaminated layer and delamination propagation in a compressed composite is presented in this paper. For this purpose, the theory of flexible elastic plates with large displacements was used. As a result the compressive force and the total longitudinal strain of sub-laminate are expressed in terms of complete elliptic integrals, which uniquely identify the buckled shape of sub-laminate, the effect of buckling on the compression strain and increment of the compressive force in the buckled state. Stress and strain, as well as the strength of the buckled sub-laminate in the dangerous cross-section were also analyzed. The results of the general analysis of delamination propagation and its compression-bending destruction in the buckled state allow to define the basic regularities of the damage behavior of compressed layered composite.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Oh, Teresa. "Low Power Thin Film Transistor". Science of Advanced Materials 9, n.º 11 (1 de noviembre de 2017): 2013–18. http://dx.doi.org/10.1166/sam.2017.3204.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Lifshitz, N., S. Luryi, M. R. Pinto y C. S. Rafferty. "Active-gate thin-film transistor". IEEE Electron Device Letters 14, n.º 8 (agosto de 1993): 394–95. http://dx.doi.org/10.1109/55.225590.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Nomura, Kenji, Toshio Kamiya y Hideo Hosono. "Ambipolar Oxide Thin-Film Transistor". Advanced Materials 23, n.º 30 (1 de julio de 2011): 3431–34. http://dx.doi.org/10.1002/adma.201101410.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Kimura, Mutsumi, Takehiro Shima y Takehiko Yamashita. "Artificial Retina using Thin-Film Photodiode and Thin-Film Transistor". ECS Transactions 3, n.º 8 (21 de diciembre de 2019): 325–31. http://dx.doi.org/10.1149/1.2356370.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Hamilton, M. C. y J. Kanicki. "Organic Polymer Thin-Film Transistor Photosensors". IEEE Journal of Selected Topics in Quantum Electronics 10, n.º 4 (julio de 2004): 840–48. http://dx.doi.org/10.1109/jstqe.2004.833972.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Bof Bufon, C. C. y T. Heinzel. "Polypyrrole thin-film field-effect transistor". Applied Physics Letters 89, n.º 1 (3 de julio de 2006): 012104. http://dx.doi.org/10.1063/1.2219375.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Prins, M. W. J., K. ‐O Grosse‐Holz, G. Müller, J. F. M. Cillessen, J. B. Giesbers, R. P. Weening y R. M. Wolf. "A ferroelectric transparent thin‐film transistor". Applied Physics Letters 68, n.º 25 (17 de junio de 1996): 3650–52. http://dx.doi.org/10.1063/1.115759.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Klauk, H., D. J. Gundlach y T. N. Jackson. "Fast organic thin-film transistor circuits". IEEE Electron Device Letters 20, n.º 6 (junio de 1999): 289–91. http://dx.doi.org/10.1109/55.767101.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Kim, Gun Hee, Hyun Soo Kim, Hyun Soo Shin, Byun Du Ahn, Kyung Ho Kim y Hyun Jae Kim. "Inkjet-printed InGaZnO thin film transistor". Thin Solid Films 517, n.º 14 (mayo de 2009): 4007–10. http://dx.doi.org/10.1016/j.tsf.2009.01.151.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Nakashima, Akihiro, Yuki Sagawa y Mutsumi Kimura. "Temperature Sensor Using Thin-Film Transistor". IEEE Sensors Journal 11, n.º 4 (abril de 2011): 995–98. http://dx.doi.org/10.1109/jsen.2010.2060720.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Liu, Po-Tsun, Yi-Teh Chou, Li-Feng Teng, Fu-Hai Li y Han-Ping Shieh. "Nitrogenated amorphous InGaZnO thin film transistor". Applied Physics Letters 98, n.º 5 (31 de enero de 2011): 052102. http://dx.doi.org/10.1063/1.3551537.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Stewart, Kevin A. y John F. Wager. "Thin-film transistor mobility limits considerations". Journal of the Society for Information Display 24, n.º 6 (junio de 2016): 386–93. http://dx.doi.org/10.1002/jsid.452.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Kim, Ji-Won, Jong-Keun Lee, Young Woong Kim, Sung-Kyu Hong, Yong-Young Noh y Young Soon Kim. "Printable Indium Oxide Thin-Film Transistor". NIP & Digital Fabrication Conference 26, n.º 1 (1 de enero de 2010): 737–39. http://dx.doi.org/10.2352/issn.2169-4451.2010.26.1.art00094_2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Winton, Brad, Mihail Ionescu y Shi Xue Dou. "The control of time-dependent buckling patterns in thin confined elastomer film". Journal of Materials Research 25, n.º 10 (octubre de 2010): 1929–35. http://dx.doi.org/10.1557/jmr.2010.0263.

Texto completo
Resumen
Low energy metal ion implantation has been used to combine an easy “bottom-up” way of creating and tuning different topographic structures on submicron to micrometer scales with the embedding of a metallic element-rich functionalized layer at the surface for a variety of scientific and technological applications. The self-organizing and complex patterns of functionalized topographic structures are highly dependent on the implanted metal ion species, variations in the geometric confinement of the buckled areas on the larger unmodified elastomer film, and the boundary conditions of the buckled regions. Systematic investigations of these dependencies have been carried out via optical and atomic force microscopy, and confirmed with cross-sectional transmission electron microscopy.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Fan, Xuanqing, Yi Wang, Yuhang Li y Haoran Fu. "Vibration Analysis of Post-Buckled Thin Film on Compliant Substrates". Sensors 20, n.º 18 (22 de septiembre de 2020): 5425. http://dx.doi.org/10.3390/s20185425.

Texto completo
Resumen
Buckling stability of thin films on compliant substrates is universal and essential in stretchable electronics. The dynamic behaviors of this special system are unavoidable when the stretchable electronics are in real applications. In this paper, an analytical model is established to investigate the vibration of post-buckled thin films on a compliant substrate by accounting for the substrate as an elastic foundation. The analytical predictions of natural frequencies and vibration modes of the system are systematically investigated. The results may serve as guidance for the dynamic design of the thin film on compliant substrates to avoid resonance in the noise environment.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Krammer, Markus, James Borchert, Andreas Petritz, Esther Karner-Petritz, Gerburg Schider, Barbara Stadlober, Hagen Klauk y Karin Zojer. "Critical Evaluation of Organic Thin-Film Transistor Models". Crystals 9, n.º 2 (6 de febrero de 2019): 85. http://dx.doi.org/10.3390/cryst9020085.

Texto completo
Resumen
The thin-film transistor (TFT) is a popular tool for determining the charge-carrier mobility in semiconductors, as the mobility (and other transistor parameters, such as the contact resistances) can be conveniently extracted from its measured current-voltage characteristics. However, the accuracy of the extracted parameters is quite limited, because their values depend on the extraction technique and on the validity of the underlying transistor model. We propose here a new approach for validating to what extent a chosen transistor model is able to predict correctly the transistor operation. In the two-step fitting approach we have developed, we analyze the measured current-voltage characteristics of a series of TFTs with different channel lengths. In the first step, the transistor parameters are extracted from each individual transistor by fitting the output and transfer characteristics to the transistor model. In the second step, we check whether the channel-length dependence of the extracted parameters is consistent with the underlying model. We present results obtained from organic TFTs fabricated in two different laboratories using two different device architectures, three different organic semiconductors and five different materials combinations for the source and drain contacts. For each set of TFTs, our approach reveals that the state-of-the-art transistor models fail to reproduce correctly the channel-length-dependence of the transistor parameters. Our approach suggests that conventional transistor models require improvements in terms of the charge-carrier-density dependence of the mobility and/or in terms of the consideration of uncompensated charges in the carrier-accumulation channel.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Won, Do Young, Manh-Cuong Nguyen, Hyun Min Kim, Nam Kyun Tak, Jin Hyung Choi, Rino Choi, Jae-Min Myoung y Ho Gyu Yoon. "Residual Image Reduction Using Electric Field Shield Metal in Plastic Organic Light-Emitting Diode Display". Journal of Nanoscience and Nanotechnology 20, n.º 11 (1 de noviembre de 2020): 6884–89. http://dx.doi.org/10.1166/jnn.2020.18806.

Texto completo
Resumen
A plastic organic light-emitting diode display is a device that emits light in an organic layer in proportion to the amount of current applied from a thin film transistor, which constitutes a pixel. However, it was confirmed that the residual image was shown by the operation of the thin film transistor. To suppress residual image, the effect of electric field was studied in operation of a-IGZO thin film transistor. The a-IGZO thin film transistor, in which a polyimide film was used as a substrate, was applied as a driving thin film transistor for pixel circuits in a plastic organic light-emitting diode display, and the effect of the electric field behavior inside the film on residual images was studied. Residual images were strongly connection with the electric field distribution characteristics inside the polyimide substrate, and they were reduced by introducing an electric field shield metal layer in the a-IGZO thin film transistor. The correlation between residual image generation and the operation of the a-IGZO thin film transistor was further explained through technology computer-aided design simulation (Silvaco Group Inc.).
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Seok, Seonho. "FEM Analysis of Buckled Dielectric Thin-Film Packaging Based on 3D Direct Numerical Simulation". Micromachines 14, n.º 7 (26 de junio de 2023): 1312. http://dx.doi.org/10.3390/mi14071312.

Texto completo
Resumen
This paper presents a 3D direct numerical simulation of buckled thin-film packaging based on transferred elastic thin-film wrinkling bonded on a compliant polymer ring. The mode change of the fabricated thin-film cap is found by measuring the thin-film cap shape at different times after Si substrate debonding. The conventional linear and nonlinear buckling simulations are not adequate to understand the behavior of the thin-film buckling mechanism creating such packaging cap mode change. Direct buckling simulation is recently reported as an easy and useful numerical wrinkling simulation method. A novel 3D FEM model of a thin-film package suitable for direct 3D buckling simulation is built to reduce the mode mixture between different buckling modes. Buckling modes of the packaging cap are investigated in terms of elastic moduli of package materials and applied strain due to thermal expansion coefficient difference. Based on the simulation results, it is found that there are two main modes in the fabricated thin-film buckling package determining the shape of the transferred thin-film packaging cover depending on the elasticity ratio between the cap and sealing ring materials. The mode shift from wrinkling cap mode to out-of-plane cap mode due to applied strain along a polymeric sealing ring is found.
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Kanoh, Hiroshi y Masakiyo Matsumura. "Thermal-CVD Amorphous-Silicon Thin-Film Transistor". IEEJ Transactions on Fundamentals and Materials 110, n.º 10 (1990): 667–69. http://dx.doi.org/10.1541/ieejfms1990.110.10_667.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Elkington, Daniel, Nathan Cooling, Warwick Belcher, Paul Dastoor y Xiaojing Zhou. "Organic Thin-Film Transistor (OTFT)-Based Sensors". Electronics 3, n.º 2 (8 de abril de 2014): 234–54. http://dx.doi.org/10.3390/electronics3020234.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Ichikawa, Kazunori, Mami Fujii, Yukiharu Uraoka, Prakaipetch Punchaipetch, Hiroshi Yano, Tomoaki Hatayama, Takashi Fuyuki y Ichiro Yamashita. "Nonvolatile Thin Film Transistor Memory with Ferritin". Journal of the Korean Physical Society 54, n.º 9(5) (15 de enero de 2009): 554–57. http://dx.doi.org/10.3938/jkps.54.554.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Higashi, H., M. Nakano, K. Kudo, Y. Fujita, S. Yamada, T. Kanashima, I. Tsunoda, H. Nakashima y K. Hamaya. "A crystalline germanium flexible thin-film transistor". Applied Physics Letters 111, n.º 22 (27 de noviembre de 2017): 222105. http://dx.doi.org/10.1063/1.5007828.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Clarisse, C., M. T. Riou, M. Gauneau y M. le Contellec. "Field-effect transistor with diphthalocyanine thin film". Electronics Letters 24, n.º 11 (26 de mayo de 1988): 674–75. http://dx.doi.org/10.1049/el:19880456.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Kumar, K. P. A., J. K. O. Sin, Man Wong y V. M. C. Poon. "A Conductivity Modulated Polysilicon Thin-Film Transistor". IEEE Electron Device Letters 16, n.º 11 (noviembre de 1995): 521–23. http://dx.doi.org/10.1109/55.468287.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Maeda, Hiroki. "6.Thin Film Transistor Using Organic Semiconductor". Journal of The Institute of Image Information and Television Engineers 64, n.º 9 (2010): 1320–22. http://dx.doi.org/10.3169/itej.64.1320.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Afentakis, T., R. S. Sposili y A. Voutsas. "A Novel Agglomerated-Silicon Thin-Film Transistor". IEEE Electron Device Letters 31, n.º 1 (enero de 2010): 50–52. http://dx.doi.org/10.1109/led.2009.2035137.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Ling Li, H. Marien, J. Genoe, M. Steyaert y P. Heremans. "Compact Model for Organic Thin-Film Transistor". IEEE Electron Device Letters 31, n.º 3 (marzo de 2010): 210–12. http://dx.doi.org/10.1109/led.2009.2039744.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Street, R. A., W. S. Wong, T. Ng y R. Lujan. "Amorphous silicon thin film transistor image sensors". Philosophical Magazine 89, n.º 28-30 (octubre de 2009): 2687–97. http://dx.doi.org/10.1080/14786430802709113.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Cheon, Jun Hyuk, Seung Hyun Park, Moon Hyo Kang, Jin Jang, Sung Eun Ahn, Jeffrey Cites, Carlo Kosik Williams y Chuan Che Wang. "Ultrathin Si Thin-Film Transistor on Glass". IEEE Electron Device Letters 30, n.º 2 (febrero de 2009): 145–47. http://dx.doi.org/10.1109/led.2008.2010065.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Colgan, E. G., R. J. Polastre, M. Takeichi y R. L. Wisnieff. "Thin-film-transistor process-characterization test structures". IBM Journal of Research and Development 42, n.º 3.4 (mayo de 1998): 481–90. http://dx.doi.org/10.1147/rd.423.0481.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Mourey, Devin A., Dalong A. Zhao, Jie Sun y Thomas N. Jackson. "Fast PEALD ZnO Thin-Film Transistor Circuits". IEEE Transactions on Electron Devices 57, n.º 2 (febrero de 2010): 530–34. http://dx.doi.org/10.1109/ted.2009.2037178.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Yoo, Geonwook, Tze-ching Fung, Daniela Radtke, Marko Stumpf, Uwe Zeitner y Jerzy Kanicki. "Hemispherical thin-film transistor passive pixel sensors". Sensors and Actuators A: Physical 158, n.º 2 (marzo de 2010): 280–83. http://dx.doi.org/10.1016/j.sna.2009.11.019.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Sameshima, T. "Laser processing for thin film transistor applications". Materials Science and Engineering: B 45, n.º 1-3 (marzo de 1997): 186–93. http://dx.doi.org/10.1016/s0921-5107(96)01886-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Sun, Kai, Ioannis Zeimpekis, Marta Lombardini, Nonofo M. Jack Ditshego, Stuart J. Pearce, Kian S. Kiang, Owain Thomas et al. "Three-Mask Polysilicon Thin-Film Transistor Biosensor". IEEE Transactions on Electron Devices 61, n.º 6 (junio de 2014): 2170–76. http://dx.doi.org/10.1109/ted.2014.2315669.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Dutta, Soumya y Ananth Dodabalapur. "Zinc tin oxide thin film transistor sensor". Sensors and Actuators B: Chemical 143, n.º 1 (4 de diciembre de 2009): 50–55. http://dx.doi.org/10.1016/j.snb.2009.07.056.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Koezuka, H., A. Tsumura y T. Ando. "Field-effect transistor with polythiophene thin film". Synthetic Metals 18, n.º 1-3 (febrero de 1987): 699–704. http://dx.doi.org/10.1016/0379-6779(87)90964-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Van Calster, A. "Fabrication processes for the thin film transistor". Thin Solid Films 126, n.º 3-4 (abril de 1985): 219–25. http://dx.doi.org/10.1016/0040-6090(85)90314-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Hwang, J. D., Y. K. Fang y T. Y. Tsai. "A vertical submicron SiC thin film transistor". Solid-State Electronics 38, n.º 2 (febrero de 1995): 275–78. http://dx.doi.org/10.1016/0038-1101(94)00120-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Park, Jong-Won, Dong Hee Lee, June Chen, Man-Hun Bae, Moon-Sung Kang, Yun-Hi Kim, Seungmoon Pyo, Mi Hye Yi y Soon-Ki Kwon. "Organic thin-film transistor based on dibenzothiophene". Current Applied Physics 10, n.º 4 (noviembre de 2010): e152-e156. http://dx.doi.org/10.1016/j.cap.2010.03.011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Hunter, Joe S. "Multifunction sensor using thin film transistor transducers". Journal of the Acoustical Society of America 77, n.º 5 (mayo de 1985): 1978. http://dx.doi.org/10.1121/1.391784.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Wager, John F. "(Invited) Thin-Film Transistor Accumulation-Mode Modeling". ECS Meeting Abstracts MA2022-02, n.º 35 (9 de octubre de 2022): 1257. http://dx.doi.org/10.1149/ma2022-02351257mtgabs.

Texto completo
Resumen
Analytical equations are developed for electrostatic assessment of accumulation-mode thin-film transistors (TFTs) so that potential, electric field, and accumulation layer free electron concentration profiles may be generated. Additionally, equations are derived for plotting TFT trap density versus surface potential, based on accurate extraction of the channel mobility as a function of gate voltage. A key factor in formulating these device physics equations is distinguishing between a ‘long-base’ or ‘short-base’ channel thickness. A ‘long-base’ (‘short-base’) channel thickness is defined to occur when the accumulation layer thickness (as calculated in the normal manner) is less than (greater than) the physical thickness of the channel layer. The electrostatic equations derived herein are applied to the analysis of two amorphous oxide semiconductor (AOS) TFTs with differing channel layers, i.e., a 40 nm amorphous indium gallium zinc oxide (a-IGZO) or a 7 nm amorphous indium zinc oxide (a-IZO). Application of these equations suggests that optimal TFT performance is obtained when the channel layer thickness is chosen to be similar to its Debye length. Estimated trap densities of these two AOS TFTs are found to be quite similar. Therefore, the superior mobility performance of the a-IZO TFT compared to the a-IGZO TFT is ascribed to the smaller effective mass of a-IZO, assuming that the maximum (no trapping) drift mobility in the channel is established by the thermally-limited diffusive mobility.
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Aguilhon, L., J.-P. Bourgoin, A. Barraud y P. Hesto. "Thin film organic channel field effect transistor". Synthetic Metals 71, n.º 1-3 (abril de 1995): 1971–74. http://dx.doi.org/10.1016/0379-6779(94)03130-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Anthopoulos, Thomas D., Yong‐Young Noh y Oana D. Jurchescu. "Emerging Thin‐Film Transistor Technologies and Applications". Advanced Functional Materials 30, n.º 20 (mayo de 2020): 2001678. http://dx.doi.org/10.1002/adfm.202001678.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía