Literatura académica sobre el tema "Brownian motion processes"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Brownian motion processes".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Brownian motion processes"
Suryawan, Herry P. y José L. da Silva. "Green Measures for a Class of Non-Markov Processes". Mathematics 12, n.º 9 (27 de abril de 2024): 1334. http://dx.doi.org/10.3390/math12091334.
Texto completoTakenaka, Shigeo. "Integral-geometric construction of self-similar stable processes". Nagoya Mathematical Journal 123 (septiembre de 1991): 1–12. http://dx.doi.org/10.1017/s0027763000003627.
Texto completoRosen, Jay y Jean-Dominique Deuschel. "motion, super-Brownian motion and related processes". Annals of Probability 26, n.º 2 (abril de 1998): 602–43. http://dx.doi.org/10.1214/aop/1022855645.
Texto completoRao, Nan, Qidi Peng y Ran Zhao. "Cluster Analysis on Locally Asymptotically Self-Similar Processes with Known Number of Clusters". Fractal and Fractional 6, n.º 4 (14 de abril de 2022): 222. http://dx.doi.org/10.3390/fractalfract6040222.
Texto completoSOTTINEN, TOMMI y LAURI VIITASAARI. "CONDITIONAL-MEAN HEDGING UNDER TRANSACTION COSTS IN GAUSSIAN MODELS". International Journal of Theoretical and Applied Finance 21, n.º 02 (marzo de 2018): 1850015. http://dx.doi.org/10.1142/s0219024918500152.
Texto completoAndres, Sebastian y Lisa Hartung. "Diffusion processes on branching Brownian motion". Latin American Journal of Probability and Mathematical Statistics 15, n.º 2 (2018): 1377. http://dx.doi.org/10.30757/alea.v15-51.
Texto completoOuknine, Y. "“Skew-Brownian Motion” and Derived Processes". Theory of Probability & Its Applications 35, n.º 1 (enero de 1991): 163–69. http://dx.doi.org/10.1137/1135018.
Texto completoKatori, Makoto y Hideki Tanemura. "Noncolliding Brownian Motion and Determinantal Processes". Journal of Statistical Physics 129, n.º 5-6 (13 de octubre de 2007): 1233–77. http://dx.doi.org/10.1007/s10955-007-9421-y.
Texto completoJedidi, Wissem y Stavros Vakeroudis. "Windings of planar processes, exponential functionals and Asian options". Advances in Applied Probability 50, n.º 3 (septiembre de 2018): 726–42. http://dx.doi.org/10.1017/apr.2018.33.
Texto completoAdler, Robert J. y Ron Pyke. "Scanning Brownian Processes". Advances in Applied Probability 29, n.º 2 (junio de 1997): 295–326. http://dx.doi.org/10.2307/1428004.
Texto completoTesis sobre el tema "Brownian motion processes"
Dunkel, Jörn. "Relativistic Brownian motion and diffusion processes". kostenfrei, 2008. http://d-nb.info/991318757/34.
Texto completoTrefán, György. "Deterministic Brownian Motion". Thesis, University of North Texas, 1993. https://digital.library.unt.edu/ark:/67531/metadc279262/.
Texto completoKeprta, S. "Integral tests for Brownian motion and some related processes". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ26856.pdf.
Texto completoKeprta, Stanislav Carleton University Dissertation Mathematics and Statistics. "Integral tests for Brownian motion and some related processes". Ottawa, 1997.
Buscar texto completoCakir, Rasit Grigolini Paolo. "Fractional Brownian motion and dynamic approach to complexity". [Denton, Tex.] : University of North Texas, 2007. http://digital.library.unt.edu/permalink/meta-dc-3992.
Texto completoSimon, Matthieu. "Markov-modulated processes: Brownian motions, option pricing and epidemics". Doctoral thesis, Universite Libre de Bruxelles, 2017. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/250010.
Texto completoDoctorat en Sciences
info:eu-repo/semantics/nonPublished
莊競誠 y King-sing Chong. "Explorations in Markov processes". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1997. http://hub.hku.hk/bib/B31235682.
Texto completoChong, King-sing. "Explorations in Markov processes /". Hong Kong : University of Hong Kong, 1997. http://sunzi.lib.hku.hk/hkuto/record.jsp?B18736105.
Texto completoDuncan, Thomas. "Brownian Motion: A Study of Its Theory and Applications". Thesis, Boston College, 2007. http://hdl.handle.net/2345/505.
Texto completoThe theory of Brownian motion is an integral part of statistics and probability, and it also has some of the most diverse applications found in any topic in mathematics. With extensions into fields as vast and different as economics, physics, and management science, Brownian motion has become one of the most studied mathematical phenomena of the late twentieth and early twenty-first centuries. Today, Brownian motion is mostly understood as a type of mathematical process called a stochastic process. The word "stochastic" actually stems from the Greek word for "I guess," implying that stochastic processes tend to produce uncertain results, and Brownian motion is no exception to this, though with the right models, probabilities can be assigned to certain outcomes and we can begin to understand these complicated processes. This work reaches to attain this goal with regard to Brownian motion, and in addition it explores several applications found in the aforementioned fields and beyond
Thesis (BA) — Boston College, 2007
Submitted to: Boston College. College of Arts and Sciences
Discipline: Mathematics
Discipline: College Honors Program
Hult, Henrik. "Topics on fractional Brownian motion and regular variation for stochastic processes". Doctoral thesis, KTH, Mathematics, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3604.
Texto completoThe first part of this thesis studies tail probabilities forelliptical distributions and probabilities of extreme eventsfor multivariate stochastic processes. It is assumed that thetails of the probability distributions satisfy a regularvariation condition. This means, roughly speaking, that thereis a non-negligible probability for very large or extremeoutcomes to occur. Such models are useful in applicationsincluding insurance, finance and telecommunications networks.It is shown how regular variation of the marginals, or theincrements, of a stochastic process implies regular variationof functionals of the process. Moreover, the associated tailbehavior in terms of a limit measure is derived.
The second part of the thesis studies problems related toparameter estimation in stochastic models with long memory.Emphasis is on the estimation of the drift parameter in somestochastic differential equations driven by the fractionalBrownian motion or more generally Volterra-type processes.Observing the process continuously, the maximum likelihoodestimator is derived using a Girsanov transformation. In thecase of discrete observations the study is carried out for theparticular case of the fractional Ornstein-Uhlenbeck process.For this model Whittles approach is applied to derive anestimator for all unknown parameters.
Libros sobre el tema "Brownian motion processes"
1972-, Dolgopyat Dmitry, ed. Brownian Brownian motion-I. Providence, R.I: American Mathematical Society, 2009.
Buscar texto completoWiersema, Ubbo F. Brownian motion calculus. Chichester: John Wiley & Sons, 2008.
Buscar texto completoWiersema, Ubbo F. Brownian Motion Calculus. New York: John Wiley & Sons, Ltd., 2008.
Buscar texto completoSchilling, René L. Brownian motion: An introduction to stochastic processes. Berlin: De Gruyter, 2012.
Buscar texto completoLindstrøm, Tom. Brownian motion on nested fractals. Providence, R.I., USA: American Mathematical Society, 1990.
Buscar texto completoEarnshaw, Robert C. y Elizabeth M. Riley. Brownian motion: Theory, modelling and applications. Hauppauge, N.Y: Nova Science Publishers, 2011.
Buscar texto completoBass, Richard F. Cutting Brownian paths. Providence, R.I: American Mathematical Society, 1999.
Buscar texto completoKaratzas, Ioannis. Brownian motion and stochastic calculus. 2a ed. New York: Springer, 1996.
Buscar texto completoE, Shreve Steven, ed. Brownian motion and stochastic calculus. New York: Springer-Verlag, 1988.
Buscar texto completoE, Shreve Steven, ed. Brownian motion and stochastic calculus. 2a ed. New York: Springer-Verlag, 1991.
Buscar texto completoCapítulos de libros sobre el tema "Brownian motion processes"
Rozanov, Yuriĭ A. "Brownian Motion". En Introduction to Random Processes, 33–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72717-7_5.
Texto completoResnick, Sidney I. "Brownian Motion". En Adventures in Stochastic Processes, 482–557. Boston, MA: Birkhäuser Boston, 2002. http://dx.doi.org/10.1007/978-1-4612-0387-2_6.
Texto completoKorosteleva, Olga. "Brownian Motion". En Stochastic Processes with R, 153–82. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003244288-9.
Texto completoKoralov, Leonid y Yakov G. Sinai. "Brownian Motion". En Theory of Probability and Random Processes, 253–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-68829-7_18.
Texto completoHainaut, Donatien. "Fractional Brownian Motion". En Continuous Time Processes for Finance, 143–78. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06361-9_6.
Texto completoMadhira, Sivaprasad y Shailaja Deshmukh. "Brownian Motion Process". En Introduction to Stochastic Processes Using R, 487–545. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-5601-2_9.
Texto completoItô, Kiyosi y Henry P. McKean. "The standard Brownian motion". En Diffusion Processes and their Sample Paths, 5–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-62025-6_2.
Texto completoBas, Esra. "Introduction to Brownian Motion". En Basics of Probability and Stochastic Processes, 253–63. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32323-3_16.
Texto completoBosq, Denis y Hung T. Nguyen. "Brownian Motion and Diffusion Processes". En A Course in Stochastic Processes, 233–53. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-015-8769-3_12.
Texto completoKallenberg, Olav. "Gaussian Processes and Brownian Motion". En Probability and Its Applications, 249–69. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4757-4015-8_13.
Texto completoActas de conferencias sobre el tema "Brownian motion processes"
Bilokon, Paul y Abbas Edalat. "A domain-theoretic approach to Brownian motion and general continuous stochastic processes". En CSL-LICS '14: JOINT MEETING OF the Twenty-Third EACSL Annual Conference on COMPUTER SCIENCE LOGIC. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2603088.2603102.
Texto completoBorhani, Alireza y Matthias Patzold. "Modelling of non-stationary mobile radio channels using two-dimensional brownian motion processes". En 2013 International Conference on Advanced Technologies for Communications (ATC 2013). IEEE, 2013. http://dx.doi.org/10.1109/atc.2013.6698114.
Texto completoCezayirli, Ahmet. "Simulation of online relative concentration measurements in chemical processes using Brownian motion and image processing". En 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). IEEE, 2020. http://dx.doi.org/10.1109/ismsit50672.2020.9254637.
Texto completoBusnaina, Ahmed, Xiaoying Zhu y Xiaowei Zheng. "Particle Transport in CVD and Diffusion Processes". En ASME 1992 International Computers in Engineering Conference and Exposition. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/cie1992-0057.
Texto completoPerez Rey, Luis A., Vlado Menkovski y Jim Portegies. "Diffusion Variational Autoencoders". En Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/375.
Texto completoTian, L., G. Ahmadi y J. Y. Tu. "Multi-Scale Transport Modeling: Asbestos and Nano Fibers in Inhalation Risk Assessments". En ASME 2017 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/fedsm2017-69083.
Texto completoZare, Azam, Omid Abouali y Goodarz Ahmadi. "A Numerical Model for Brownian Motions of Nano-Particles in Supersonic and Hypersonic Impactors". En ASME 2006 2nd Joint U.S.-European Fluids Engineering Summer Meeting Collocated With the 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/fedsm2006-98308.
Texto completoMacGibbon, Bruce S. y Ahmed A. Busnaina. "Mass Transport and Particle Transport in an LPCVD Process". En ASME 1993 International Computers in Engineering Conference and Exposition. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/cie1993-0027.
Texto completoPerez, Dario G. y Luciano Zunino. "Inner- and outer-scales of turbulent wavefront phase defined through the lens of multi-scale Levy fractional Brownian motion processes". En SPIE Remote Sensing, editado por Anton Kohnle, Karin Stein y John D. Gonglewski. SPIE, 2008. http://dx.doi.org/10.1117/12.800155.
Texto completoTakana, Hidemasa, Kazuhiro Ogawa, Tetsuo Shoji y Hideya Nishiyama. "Optimization of Cold Gas Dynamic Spray Processes by Computational Simulation". En ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37081.
Texto completoInformes sobre el tema "Brownian motion processes"
Adler, Robert J. y Gennady Samorodnitsky. Super Fractional Brownian Motion, Fractional Super Brownian Motion and Related Self-Similar (Super) Processes. Fort Belvoir, VA: Defense Technical Information Center, enero de 1991. http://dx.doi.org/10.21236/ada274696.
Texto completoAdler, Robert J. y Gennady Samorodnitsky. Super Fractional Brownian Motion, Fractional Super Brownian Motion and Related Self-Similar (Super) Processes. Fort Belvoir, VA: Defense Technical Information Center, enero de 1994. http://dx.doi.org/10.21236/ada275124.
Texto completoСоловйов, В. М., В. В. Соловйова y Д. М. Чабаненко. Динаміка параметрів α-стійкого процесу Леві для розподілів прибутковостей фінансових часових рядів. ФО-П Ткачук О. В., 2014. http://dx.doi.org/10.31812/0564/1336.
Texto completo