Tesis sobre el tema "Broadbnad dielectric spectroscopy"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 19 mejores tesis para su investigación sobre el tema "Broadbnad dielectric spectroscopy".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Trubert, Jules. "Appοrt de la spectrοscοpie à relaxatiοn diélectrique sοus pressiοn pοur investiguer la mοbilité mοléculaire dans les pοlymères thermοplastiques amοrphes". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR048.
Texto completoThe ambiguity surrounding the relationship between the glass transition temperature, isobaric fragility, and the characteristic size of the Cooperative Rearranging Regions (CRR) for glass-forming liquids has been resolved by considering the volumetric and thermal contributions of the structural relaxation. These contributions have traditionally been estimated by considering assumptions at atmospheric pressure, whereas they require pressure variations to be measured. The use of broadband dielectric spectroscopy under pressure offers a new perspective to experimentally determine the contributions of isobaric fragility. On the one hand, the measurement is performed for three amorphous thermoplastic polymers: Polylactic acid (PLA), polyethylene glycol terephthalate (PETg) and polyvinyl acetate (PVAc). These polymers show a strong correlation between the activation volume, which leads to the volumetric contribution of isobaric fragility, and the CRR volume. The thermal contribution is determined by two methods and evolves in an opposite manner to the volumetric contribution as function of pressure. The contributions explain the isobaric fragility behavior at atmospheric pressure. On the other hand, the poly(ethylene-co-vinyl acetate) (EVA) copolymer series, which presents a different ratio of polar side groups with an unchanged backbone chain, is analyzed in terms of intermolecular interactions from the dielectric relaxation shape. In this series, the polar side groups play a crucial role in the volumetric and thermal contributions of the isobaric fragility, which are also related to inter and intramolecular interactions. By combining these different results, a relationship between chemical structure and the influence of pressure/temperature on molecular mobility can be established. The effects of structural parameters, such as backbone and side group stiffness or packing efficiency, are highlighted and explain how isobaric fragility is affected
Xiao, Zhang. "PROBING POLYMER DYNAMICS USING HIGH THROUGHPUT BROADBAND DIELECTRIC SPECTROSCOPY". University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1533127319642101.
Texto completoBakhshiani, Mehran. "A SELF-SUSTAINED MINIATURIZED MICROFLUIDIC-CMOS PLATFORM FORBROADBAND DIELECTRIC SPECTROSCOPY". Case Western Reserve University School of Graduate Studies / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=case1436266857.
Texto completoCheng, Jialu. "Broadband Dieletric Properties of Impregnated Transformer Paper Insulation at Various Moisture Contents". Thesis, KTH, Elektroteknisk teori och konstruktion, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-91922.
Texto completoSangoro, Joshua Rume, Ciprian Iacob, Sergej Naumov, Jörg Kärger y Friedrich Kremer. "Broadband dielectric spectroscopy as a tool to study diffusion coefficients in conducting glass-forming systems". Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-191093.
Texto completoSangoro, Joshua Rume, Ciprian Iacob, Sergej Naumov, Jörg Kärger y Friedrich Kremer. "Broadband dielectric spectroscopy as a tool to study diffusion coefficients in conducting glass-forming systems". Diffusion fundamentals 11 (2009) 87, S. 1-2, 2009. https://ul.qucosa.de/id/qucosa%3A14058.
Texto completoAgrawal, Anshuman. "Multiscale characterisation of NMC 532 hierarchical electrodes in a lithium-ion battery using Broadband Dielectric Spectroscopy". Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASF094.
Texto completoBroadband dielectric spectroscopy (BDS) is used to study mixtures of varying composition, to characterize their electrical properties, namely permittivity, and its corresponding effective conductivity/resistivity over a broad range of frequencies (Hz to GHz regime). This permits a better understanding of transport limitations across the various interfaces of the multi-hierachical lithium-ion battery electrode. Emphasis is first placed on studying the active material NMC 532 at different states (dry and wet with either a solvent or with a corresponding electrolyte). A separate study on the effect of carbon black on electrodes is also evidenced. This allowed to better understand and comment on the global BDS spectra measurements of industrially made NMC 532 electrodes containing carbon black, both dry and wet (solvent or electrolyte)
Comer, Anthony C. "DYNAMIC RELAXATION PROPERTIES OF AROMATIC POLYIMIDES AND POLYMER NANOCOMPOSITES". UKnowledge, 2011. http://uknowledge.uky.edu/cme_etds/1.
Texto completoTseng, Jung-Kai. "Enhanced Dielectric Properties of Multilayer Capacitor Film via Interfacial Polarization". Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1449137228.
Texto completoKalakkunnath, Sumod. "VISCOELASTIC RELAXATION CHARACTERISTICS OF RUBBERY POLYMER NETWORKS AND ENGINEERING POLYESTERS". UKnowledge, 2007. http://uknowledge.uky.edu/gradschool_diss/486.
Texto completoRudys, Saulius. "Development of the methods of broadband dielectric spectroscopy by investigating (1-x)(Na1/2 Bi1/2)TiO3 - xLa(Mg1/2 Ti1/2)O3 and other materials". Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2012. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2012~D_20121001_093609-73724.
Texto completoŠiame darbe nagrinėjamos galimybės patobulinti plačiajuostės dielektrinės spektroskopijos metodus naudojant skaitmeninius ir analitinius daugelio modų dielektrinės skvarbos skaičiavimo metodus, tiriami (1-x)(Na1/2 Bi1/2)TiO3 - xLa(Mg1/2 Ti1/2)O3 (NBT-LMT) keramikų grupės laidumo ypatumai. Nagrinėjama galimybė pritaikyti HFSS skaitmeninio modeliavimo programą dielektrinės spektroskopijos tikslams. Naudojant šią programinę įrangą, apskaičiuojama dielektrinė ir magnetinė skvarbos komplikuotiems mikrojuostelinės linijos ir dalinai užpildyto bangolaidžio matavimo grandinių atvejams. Pateikiami patobulinti kondensatoriaus koaksialinėje linijoje ir ribotų matmenų atviro galo koaksialinės linijos matematiniai modeliai. Šie modeliai patikrinami skaitmeniniu metodu. Naudojant daugiamodį kondensatoriaus modelį, atsižvelgus į magnetinio lauko pasiskirstymą koaksialinėje matavimo grandinėje, pasiūlomas būdas pamatuoti mažai bandinio magnetinei skvarbai, kai dielektrinė skvarba didelė (dešimtim ar šimtais kartų didesnė už magnetinę skvarbą). Atviro galo koaksialinei linijai siūloma keletas kalibravimo būdų, įrenginys bandiniui prispausti prie linijos. Bešvinė NBT-LMT keramika buvo tyrinėjama dielektrinės spektroskopijos metodais. Gauti rezultatai rodo, kad NBT-LMT keramikų grupėje elektriniam laidumui galioja Maerio-Neldelio taisyklė.
Pirondelli, Andrea. "Production and Electrical Characterization of Low Density Polyethylene-based Micro- and Nano-dielectrics containing Graphene Oxide, Functionalized Graphene and Carbon Black additives". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016.
Buscar texto completoTreufeld, Imre. "I. Polymer Films for High Temperature Capacitor ApplicationsII. Differential Electrochemical Mass Spectrometry". Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1465503063.
Texto completoPtacek, Saija Maria. "Funktionalisierte Alkylmethacrylat-Blockcopolymere als Template zur Darstellung geordneter Silica-Strukturen". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-26524.
Texto completoThe present study deals with the synthesis of alkyl methacrylate block copolymers, the characterization of their chemical structure and the microphase separation behavior in bulk and thin films. The main objective of this work was the attachment of functional groups to an alkyl methacrylate diblock copolymer system. A first evaluation of the ability of functionalized block copolymer structures to act as a templating material regarding silica formation in sol-gel synthesis of alkoxysilanes was aspired. The diblock copolymer system of poly(pentyl metacrylate-b-methyl methacrylate) (PPMA-b-PMMA) was chosen. It was synthesized following the mechanism of anionic polymerization to achieve effective control over molar mass, composition and polydispersity. The allyl functionality was chosen for a versatilely modifiable and stable functional group and attached to the terminal chain end by endcapping the living polymer chain ends with allyl bromide. The head of the chain was functionalized by initiation with allyl lithium. By combining functional initiation and endcapping, bifunctional diblock copolymers were synthesized. Furthermore multifunctionalized block copolymers were produced by anionic polymerization. By sequential anionic polymerization of PMA, allyl methacrylate and finally MMA, triblock copolymers were obtained. Two more classes of multifunctionalized block copolymers with functional groups randomly distributed in one of the two blocks were synthesized by random copolymerization. All types of mono-, di- and multiallylfunctionalized block copolymers were transformed into mono-, di- and multihydroxylfunctionalized block copolymers by hydroboration and subsequent oxidation. The polymer-analogue reaction of hydroxyl groups to triethoxysilane functions was carried out exemplarily for hydroxy terminated PMMA. The microphase separation behavior of the block copolymers was investigated by a combination of methods such as SAXS, T-SAXS, GISAXS, TEM and AFM. The influence of number and position of functional groups along the chain was examined. The block copolymers synthesized show a microphase separation behavior in accordance to previous results. Despite the low value of the Flory-Huggins interaction parameter χPMA,MMA = 0,065 phase separation occurred and the transition from the ordered to the disordered state (ODT) was followed for selected samples. Bulk morphologies are not influenced by the presence of one or two allyl or hydroxyl groups. In case of considerably more than two functional groups attached to the block copolymer chain the microphase separation behavior of nonfunctionalized and functionalized block copolymers cannot be compared directly. Block copolymers having functional groups randomly distributed along the chain of one of the two methacrylic blocks generally show the typical behavior of diblock copolymers. Their phase separation becomes less pronounced than in pure diblock copolymers, sometimes cannot be detected. To some extent this observation may be referred to increased polydispersities and partial crosslinking. If considerably more than two groups were attached to the block copolymer chain, the tendency towards phase separation increased in case of an increasing value of the effective interaction parameter compared to nonfunctionalized diblock copolymers. Microphase separation behavior and morphology formation are more affected by highly polar groups such as the hydroxyl function than by less polar groups like the allyl function. In triblock copolymers with a middle block of successive allyl or hydroxyl functions the systems tends to form a three phase system which offers much more possibilities regarding the formation of ordered structures. Experimental results of phase separation were compared to theoretical phase diagrams, which were calculated by a Mean Field approach for nonfunctionalized diblock and triblock copolymers with multiallyl- or multihydroxylfunctionalized middle block based on RPA. The experimental results are in good accordance with the simulated spinodal condition. To increase the understanding of microphase separation processes, the dynamic relaxation behavior of the system was investigated. Therefore samples were examined by broadband dielectric spectroscopy. It was shown that local movements of the block copolymer system were decelerated in general, cooperative dynamics of the α processes were slowed down for the fluent PPMA block while they were accelerated for the glassy PMMA block. After bulk morphology investigation thin films of non-, mono-, di- and multifunctionalized block copolymers were prepared. Generally thin films develope the same morphologies as in the bulk state. Due to the confined geometry of a thin film thick films tend to form structures oriented parallel to the wafer surface, while in thin films with thicknesses lower than the respective bulk domain spacing standing structures are constraint. For cylindrical morphologies the impact of film thickness is more obvious than in symmetric lamellar structures. With respect to a possible application of nanostructured diblock copolymers different approaches were taken by project partners using non-, mono- and difunctionalized block copolymers of the present study. Remarkable in this context was the application of block copolymers as template for the creation of ordered silica structures. A doctoral dissertation on organic/inorganic hybrid materials by sol-gel process was prepared in Modena. Methods developed in this thesis were adopted to the present study and further investigated on multifunctionalized block copolymer systems. First investigations aiming at the evaluation of the templating abilities of alkyl methacrylate block copolymers in silica sol-gel reactions were carried out with multihydroxyfunctionalized di- and triblock copolymers. Preliminary results give reason to the expectation of multihydroxyfunctionalized di- and triblock copolymers being able to direct the formation of silica nanoparticles in sol-gel reactions carried out in situ with silica precursors, enforcing the chemical bonding between organic and inorganic phases and influencing the shape of silica nanostructures by the default block copolymer nanostructure. Indeed silica was incorporated successfully into the cylindrical structure of PPMA-b-PMMA diblock copolymers. Future experiments on removing the organic matrix by solvent or pyrolysis to investigate shape and porosity of the remaining silica structures will increase the understanding of the silica formation process inside a preferential phase or at the interface of the block copolymers. Nevertheless, the silica particle shape can be taylored deliberately only if phase separation behavior and morphology evolution in the composite system containing silica precursor and several derivatives thereof with nonuniform interactions towards block copolymer phases are well understood from the theoretical point of view as well as experimental proof needs to be given over a broader range. The block copolymer system developed in the present study easily can be extended manifoldly regarding the chemical structure of the polymer. In the case of multifunctionalized block copolymers a tremendous variety of different products can be obtained by modulation of composition, molar mass and especially distribution of functional groups to any position along the polymer chain far beyond the limits of the three classes of multifunctionalized di- and triblockstructures chosen for this thesis. It was shown that allyl functions incorporated inherently are able to undergo crosslinking reactions, which may be controlled similarly to network formations by inorganic crosslinkers and may result in defined nanogel structures. Furthermore carbon doublebonds are open to attacks for various polymer-analogue reactions hence offering the possibility of creating a pool of differently functionalized block copolymers from a single sample of allylfunctionalized block copolymer. The results of the present study basically prove a feasibility of the binding of functional groups to alkyl methacrylate block copolymer chains with high control over number and position of functional groups along the polymeric chain. The impact of functional groups on the microphase separation behavior of the block copolymer system was evaluated and will increase the understanding of structure formation in organic/inorganic hybrid materials of future work
Kabiri, Saman 1988. "A Broadband Miniaturized Microwave Dielectric Spectroscopy System Based on Impedance Sensing". Thesis, 2013. http://hdl.handle.net/1969.1/149232.
Texto completoFischer, Bernd Michael [Verfasser]. "Broadband THz time-domain spectroscopy of biomolecules : a comprehensive study of the dielectric properties of biomaterials in the far-infrared / vorgelegt von Bernd Michael Fischer". 2006. http://d-nb.info/98063623X/34.
Texto completoFischer, Bernd-Michael [Verfasser]. "Broadband THz time-domain spectroscopy of biomolecules : a comprehensive study of the dielectric properties of biomaterials in the far-infrared / vorgelegt von Bernd Michael Fischer". 2006. http://nbn-resolving.de/urn:nbn:de:bsz:25-opus-23421.
Texto completoAbbas, Mohamed Helmy Ahmed M. "Novel RF/Microwave Circuits And Systems for Lab on-Chip/on-Board Chemical Sensors". Thesis, 2013. http://hdl.handle.net/1969.1/151075.
Texto completoPtacek, Saija Maria. "Funktionalisierte Alkylmethacrylat-Blockcopolymere als Template zur Darstellung geordneter Silica-Strukturen". Doctoral thesis, 2009. https://tud.qucosa.de/id/qucosa%3A25218.
Texto completoThe present study deals with the synthesis of alkyl methacrylate block copolymers, the characterization of their chemical structure and the microphase separation behavior in bulk and thin films. The main objective of this work was the attachment of functional groups to an alkyl methacrylate diblock copolymer system. A first evaluation of the ability of functionalized block copolymer structures to act as a templating material regarding silica formation in sol-gel synthesis of alkoxysilanes was aspired. The diblock copolymer system of poly(pentyl metacrylate-b-methyl methacrylate) (PPMA-b-PMMA) was chosen. It was synthesized following the mechanism of anionic polymerization to achieve effective control over molar mass, composition and polydispersity. The allyl functionality was chosen for a versatilely modifiable and stable functional group and attached to the terminal chain end by endcapping the living polymer chain ends with allyl bromide. The head of the chain was functionalized by initiation with allyl lithium. By combining functional initiation and endcapping, bifunctional diblock copolymers were synthesized. Furthermore multifunctionalized block copolymers were produced by anionic polymerization. By sequential anionic polymerization of PMA, allyl methacrylate and finally MMA, triblock copolymers were obtained. Two more classes of multifunctionalized block copolymers with functional groups randomly distributed in one of the two blocks were synthesized by random copolymerization. All types of mono-, di- and multiallylfunctionalized block copolymers were transformed into mono-, di- and multihydroxylfunctionalized block copolymers by hydroboration and subsequent oxidation. The polymer-analogue reaction of hydroxyl groups to triethoxysilane functions was carried out exemplarily for hydroxy terminated PMMA. The microphase separation behavior of the block copolymers was investigated by a combination of methods such as SAXS, T-SAXS, GISAXS, TEM and AFM. The influence of number and position of functional groups along the chain was examined. The block copolymers synthesized show a microphase separation behavior in accordance to previous results. Despite the low value of the Flory-Huggins interaction parameter χPMA,MMA = 0,065 phase separation occurred and the transition from the ordered to the disordered state (ODT) was followed for selected samples. Bulk morphologies are not influenced by the presence of one or two allyl or hydroxyl groups. In case of considerably more than two functional groups attached to the block copolymer chain the microphase separation behavior of nonfunctionalized and functionalized block copolymers cannot be compared directly. Block copolymers having functional groups randomly distributed along the chain of one of the two methacrylic blocks generally show the typical behavior of diblock copolymers. Their phase separation becomes less pronounced than in pure diblock copolymers, sometimes cannot be detected. To some extent this observation may be referred to increased polydispersities and partial crosslinking. If considerably more than two groups were attached to the block copolymer chain, the tendency towards phase separation increased in case of an increasing value of the effective interaction parameter compared to nonfunctionalized diblock copolymers. Microphase separation behavior and morphology formation are more affected by highly polar groups such as the hydroxyl function than by less polar groups like the allyl function. In triblock copolymers with a middle block of successive allyl or hydroxyl functions the systems tends to form a three phase system which offers much more possibilities regarding the formation of ordered structures. Experimental results of phase separation were compared to theoretical phase diagrams, which were calculated by a Mean Field approach for nonfunctionalized diblock and triblock copolymers with multiallyl- or multihydroxylfunctionalized middle block based on RPA. The experimental results are in good accordance with the simulated spinodal condition. To increase the understanding of microphase separation processes, the dynamic relaxation behavior of the system was investigated. Therefore samples were examined by broadband dielectric spectroscopy. It was shown that local movements of the block copolymer system were decelerated in general, cooperative dynamics of the α processes were slowed down for the fluent PPMA block while they were accelerated for the glassy PMMA block. After bulk morphology investigation thin films of non-, mono-, di- and multifunctionalized block copolymers were prepared. Generally thin films develope the same morphologies as in the bulk state. Due to the confined geometry of a thin film thick films tend to form structures oriented parallel to the wafer surface, while in thin films with thicknesses lower than the respective bulk domain spacing standing structures are constraint. For cylindrical morphologies the impact of film thickness is more obvious than in symmetric lamellar structures. With respect to a possible application of nanostructured diblock copolymers different approaches were taken by project partners using non-, mono- and difunctionalized block copolymers of the present study. Remarkable in this context was the application of block copolymers as template for the creation of ordered silica structures. A doctoral dissertation on organic/inorganic hybrid materials by sol-gel process was prepared in Modena. Methods developed in this thesis were adopted to the present study and further investigated on multifunctionalized block copolymer systems. First investigations aiming at the evaluation of the templating abilities of alkyl methacrylate block copolymers in silica sol-gel reactions were carried out with multihydroxyfunctionalized di- and triblock copolymers. Preliminary results give reason to the expectation of multihydroxyfunctionalized di- and triblock copolymers being able to direct the formation of silica nanoparticles in sol-gel reactions carried out in situ with silica precursors, enforcing the chemical bonding between organic and inorganic phases and influencing the shape of silica nanostructures by the default block copolymer nanostructure. Indeed silica was incorporated successfully into the cylindrical structure of PPMA-b-PMMA diblock copolymers. Future experiments on removing the organic matrix by solvent or pyrolysis to investigate shape and porosity of the remaining silica structures will increase the understanding of the silica formation process inside a preferential phase or at the interface of the block copolymers. Nevertheless, the silica particle shape can be taylored deliberately only if phase separation behavior and morphology evolution in the composite system containing silica precursor and several derivatives thereof with nonuniform interactions towards block copolymer phases are well understood from the theoretical point of view as well as experimental proof needs to be given over a broader range. The block copolymer system developed in the present study easily can be extended manifoldly regarding the chemical structure of the polymer. In the case of multifunctionalized block copolymers a tremendous variety of different products can be obtained by modulation of composition, molar mass and especially distribution of functional groups to any position along the polymer chain far beyond the limits of the three classes of multifunctionalized di- and triblockstructures chosen for this thesis. It was shown that allyl functions incorporated inherently are able to undergo crosslinking reactions, which may be controlled similarly to network formations by inorganic crosslinkers and may result in defined nanogel structures. Furthermore carbon doublebonds are open to attacks for various polymer-analogue reactions hence offering the possibility of creating a pool of differently functionalized block copolymers from a single sample of allylfunctionalized block copolymer. The results of the present study basically prove a feasibility of the binding of functional groups to alkyl methacrylate block copolymer chains with high control over number and position of functional groups along the polymeric chain. The impact of functional groups on the microphase separation behavior of the block copolymer system was evaluated and will increase the understanding of structure formation in organic/inorganic hybrid materials of future work.