Literatura académica sobre el tema "Brain wiring"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Brain wiring".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Brain wiring"

1

Goulas, A., R. F. Betzel y C. C. Hilgetag. "Spatiotemporal ontogeny of brain wiring". Science Advances 5, n.º 6 (junio de 2019): eaav9694. http://dx.doi.org/10.1126/sciadv.aav9694.

Texto completo
Resumen
The wiring of vertebrate and invertebrate brains provides the anatomical skeleton for cognition and behavior. Connections among brain regions are characterized by heterogeneous strength that is parsimoniously described by the wiring cost and homophily principles. Moreover, brains exhibit a characteristic global network topology, including modules and hubs. However, the mechanisms resulting in the observed interregional wiring principles and network topology of brains are unknown. Here, with the aid of computational modeling, we demonstrate that a mechanism based on heterochronous and spatially ordered neurodevelopmental gradients, without the involvement of activity-dependent plasticity or axonal guidance cues, can reconstruct a large part of the wiring principles (on average, 83%) and global network topology (on average, 80%) of diverse adult brain connectomes, including fly and human connectomes. In sum, space and time are key components of a parsimonious, plausible neurodevelopmental mechanism of brain wiring with a potential universal scope, encompassing vertebrate and invertebrate brains.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Gluth, S. y L. Fontanesi. "Wiring the altruistic brain". Science 351, n.º 6277 (3 de marzo de 2016): 1028–29. http://dx.doi.org/10.1126/science.aaf4688.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Umemori, Hisashi. "Wiring the functional brain". Neuroscience Research 68 (enero de 2010): e34. http://dx.doi.org/10.1016/j.neures.2010.07.394.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Gordon, Neil. "Wiring of the brain". European Journal of Paediatric Neurology 12, n.º 1 (enero de 2008): 1–3. http://dx.doi.org/10.1016/j.ejpn.2007.10.007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Peters, Michael A. "Wiring the Global Brain". Educational Philosophy and Theory 52, n.º 4 (16 de junio de 2019): 327–31. http://dx.doi.org/10.1080/00131857.2019.1622413.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Hilgetag, Claus C. "Principles of brain connectivity organization". Behavioral and Brain Sciences 29, n.º 1 (febrero de 2006): 18–19. http://dx.doi.org/10.1017/s0140525x06289015.

Texto completo
Resumen
Increases of absolute brain size during evolution reinforced stronger structuring of brain connectivity. One consequence is the hierarchical cluster structure of neural systems that combines predominantly short, but not strictly minimal, wiring with short processing pathways. Principles of “large equals well-connected” and “minimal wiring” do not completely account for observed patterns of brain connectivity. A structural model promises better predictions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Cheng, Shouqiang, Yeonwoo Park, Justyna D. Kurleto, Mili Jeon, Kai Zinn, Joseph W. Thornton y Engin Özkan. "Family of neural wiring receptors in bilaterians defined by phylogenetic, biochemical, and structural evidence". Proceedings of the National Academy of Sciences 116, n.º 20 (1 de mayo de 2019): 9837–42. http://dx.doi.org/10.1073/pnas.1818631116.

Texto completo
Resumen
The evolution of complex nervous systems was accompanied by the expansion of numerous protein families, including cell-adhesion molecules, surface receptors, and their ligands. These proteins mediate axonal guidance, synapse targeting, and other neuronal wiring-related functions. Recently, 32 interacting cell surface proteins belonging to two newly defined families of the Ig superfamily (IgSF) in fruit flies were discovered to label different subsets of neurons in the brain and ventral nerve cord. They have been shown to be involved in synaptic targeting and morphogenesis, retrograde signaling, and neuronal survival. Here, we show that these proteins, Dprs and DIPs, are members of a widely distributed family of two- and three-Ig domain molecules with neuronal wiring functions, which we refer to as Wirins. Beginning from a single ancestral Wirin gene in the last common ancestor of Bilateria, numerous gene duplications produced the heterophilic Dprs and DIPs in protostomes, along with two other subfamilies that diversified independently across protostome phyla. In deuterostomes, the ancestral Wirin evolved into the IgLON subfamily of neuronal receptors. We show that IgLONs interact with each other and that their complexes can be broken by mutations designed using homology models based on Dpr and DIP structures. The nematode orthologs ZIG-8 and RIG-5 also form heterophilic and homophilic complexes, and crystal structures reveal numerous apparently ancestral features shared with Dpr-DIP complexes. The evolutionary, biochemical, and structural relationships we demonstrate here provide insights into neural development and the rise of the metazoan nervous system.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Rubinov, Mikail, Rolf J. F. Ypma, Charles Watson y Edward T. Bullmore. "Wiring cost and topological participation of the mouse brain connectome". Proceedings of the National Academy of Sciences 112, n.º 32 (27 de julio de 2015): 10032–37. http://dx.doi.org/10.1073/pnas.1420315112.

Texto completo
Resumen
Brain connectomes are topologically complex systems, anatomically embedded in 3D space. Anatomical conservation of “wiring cost” explains many but not all aspects of these networks. Here, we examined the relationship between topology and wiring cost in the mouse connectome by using data from 461 systematically acquired anterograde-tracer injections into the right cortical and subcortical regions of the mouse brain. We estimated brain-wide weights, distances, and wiring costs of axonal projections and performed a multiscale topological and spatial analysis of the resulting weighted and directed mouse brain connectome. Our analysis showed that the mouse connectome has small-world properties, a hierarchical modular structure, and greater-than-minimal wiring costs. High-participation hubs of this connectome mediated communication between functionally specialized and anatomically localized modules, had especially high wiring costs, and closely corresponded to regions of the default mode network. Analyses of independently acquired histological and gene-expression data showed that nodal participation colocalized with low neuronal density and high expression of genes enriched for cognition, learning and memory, and behavior. The mouse connectome contains high-participation hubs, which are not explained by wiring-cost minimization but instead reflect competitive selection pressures for integrated network topology as a basis for higher cognitive and behavioral functions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Purnell, B. A. "Wiring the developing insect brain". Science 344, n.º 6188 (5 de junio de 2014): 1128. http://dx.doi.org/10.1126/science.344.6188.1128-o.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Richards, Linda J. "ISDN2012_0275: Wiring the developing brain". International Journal of Developmental Neuroscience 30, n.º 8 (diciembre de 2012): 637. http://dx.doi.org/10.1016/j.ijdevneu.2012.10.097.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Brain wiring"

1

Murphy, Alexander James. "RNA and Protein Networks That Locally Control Brain Wiring During Development". Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467385.

Texto completo
Resumen
The molecular machineries of growth cones control the formation of neural circuits in the developing brain. Although great progress has been made in elucidating axon guidance cues and their growth cone receptors, we still lack an understanding of the projection-specific RNA and protein networks in growth cones that likely control the wiring of specific circuits in vivo. To understand how specific projection neurons make wiring decisions, I focus on callosal projection neurons (CPN), which connect the two cerebral hemispheres through the corpus callosum. I developed an approach to profile and quantify the full-depth transcriptomes and proteomes of CPN growth cones and their parent cell bodies isolated in vivo. Using this comparative approach, I uncover general patterns of RNA and protein subcellular localization, with several previously unrecognized features, that might control the wiring of specific brain circuits. First, while most transcripts are expressed at similar levels in cell bodies and growth cones, a select subset are more than 10-fold enriched in growth cones compared to cell bodies, indicating active localization of those transcripts to the growth cone. By then correlating transcriptomic and proteomic data, I characterize the spatial relationship between coding transcripts and their encoded proteins. Intriguingly, many of the growth cone-enriched transcripts are noncoding RNA with unknown function. Further, growth cones appear to have distinct ribosomes. These ribosomes lack several large subunit proteins, raising the intriguing possibility of growth cone-specific translational mechanisms for selective mRNA expression. This approach is readily adaptable to other projection types in the brain, enabling high-throughput, quantitative investigation of RNA and protein controls over circuit development and, potentially, the regeneration of damaged circuitry. In addition, the approach is scalable to include epigenetic profiling, enabling full investigation of DNA, RNA, and protein networks that collectively coordinate brain wiring during development. The insights derived from this approach exemplify its capacity to quantify and characterize the molecular and translational mechanisms that control specific brain wiring at the subcellular level in vivo.
Medical Sciences
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Espinosa, Juan Sebastian. "Genetic mosaic analysis of lineage and activity in wiring the mouse brain /". May be available electronically:, 2009. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Khandelwal, Avinash 1987. "The wiring diagram of antennal lobe and mapping a brain circuit that controls chemotaxis behavior in the Drosophila larva". Doctoral thesis, Universitat Pompeu Fabra, 2017. http://hdl.handle.net/10803/663806.

Texto completo
Resumen
Drosophila larvae present unique opportunity for anatomical and functional mapping of their nervous system because of features such as numerical simplicity of neurons its nervous system is composed of, and ability to exhibit quantifiable behaviors such as chemotaxis. Here, we mapped entire antennal lobe of larval Drosophila with one of its circuits responsible for controlling sensorimotor transformation in lateral horn (LH) (higher brain) through a single brain descending neuron using electron microscopic 3D reconstruction. In antennal lobe, we reported a canonical circuit with uniglomerular projection neurons (uPNs), working to relay gain-controlled ORN activity to higher brain centers like Mushroom body and lateral horn. We also found a parallel circuit with multiglomerular projection neurons (mPNs) and hierarchically organized local neurons (LNs) selectively integrating signal from multiple ORNs at the first synapse with LN-LN connectivity putatively implementing gain control mechanism that can potentially switch from computing distinguished odor signals through panglomerular inhibition to allowing system to respond to faint aversive odor in an environment rich with strong appetitive odors. We also reconstructed and studied one of the olfactory connected circuits in the LH that was found to be influencing chemotaxis behavior in larva through a single brain descending neuron, PVM027. We found that this neuron was responsible in controlling stop response of chemotaxis behavior. EM reconstruction revealed its connection with variety of motor systems and SEZ descending neurons in the VNC. Connections were revealed with the peristaltic wave propagation circuit of larva, and PVM027 was found to be implementing stop by terminating and ceasing the origin of forward peristaltic waves.
Las larvas de Drosophila ofrecen una oportunidad única para el mapeo anatómico y funcional de su sistema nervioso debido a propiedades como la simplicidad numérica de neuronas que componen su sistema nervioso y su habilidad de exhibir comportamientos cuantificables como la quimiotaxis. En este estudio hemos mapeado el lóbulo antenal de la larva de Drosophila con uno de sus circuitos responsable de controlar la transformación sensorial-motora en el asta lateral (LH) (cerebro superior) a través de una sola neurona descendiente usando la reconstrucción 3D para microscopia electrónica. Hemos presentado, en el lóbulo antenal, un circuito canónico con proyecciones neuronales uniglomerulares (uPNs) responsables de transmitir aumentos controlados de actividad desde sus ORN* hasta centros superiores del cerebro como el cuerpo fungiforme y el asta lateral del protocerebro. Hemos descubierto también un circuito paralelo formado por neuronas con proyecciones multiglomerulares (mPNs) y neuronas locales (Lns), organizadas jerárquicamente, que integran selectivamente señales desde múltiples ORNs a nivel de primera sinapsis con conectividad LN-LN implementando aparentemente un mecanismo de aumento de control que potencialmente puede intercambiar señales olfativas distintas computacionalmente a través de inhibición panglomerular permitiendo al sistema responder a olores vagamente aversivos en un ambiente rico en fuertes olores apetitosos. También hemos reconstruido y estudiado uno de los circuitos olfativos que conectan con el LH conocido por influenciar la quimiotaxis de la larva a través de un sola neurona cerebral descendiente, la PVM027. Hemos descubierto que dicha neurona es la responsable de controlar la respuesta stop en el comportamiento de quimiotaxis. La reconstrucción por EM revela su conexión con una variedad de sistemas motores así como neuronas descendientes SEZ en el VNC. Observamos dichas conexiones gracias al circuito de propagación de onda peristáltica de la larva, y descubrimos que la PVM027 implementa la señal de stop terminando e interrumpiendo el origen de la onda peristáltica.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Eichler, Katharina [Verfasser]. "Mnemonic architecture of a mini-brain : determining the wiring diagram of the larval mushroom body of Drosophila melanogaster using EM reconstruction / Katharina Eichler". Konstanz : Bibliothek der Universität Konstanz, 2017. http://d-nb.info/1142788571/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Hasche, Anja. "Bindung von ATP an die Neurotrophine NGF und BDNF als Voraussetzung für ihre neuroprotektive Wirkung". Münster Schüling, 2008. http://d-nb.info/989241386/04.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Pruskil, Susanne. "Die neurotoxische Wirkung der Zytostatika Cyclophosphamid und Thiotepa im infantilen Gehirn der Ratte". Doctoral thesis, Humboldt-Universität zu Berlin, Medizinische Fakultät - Universitätsklinikum Charité, 2006. http://dx.doi.org/10.18452/15439.

Texto completo
Resumen
Die Entwicklung neuer Medikamente und Therapieverfahren wie die Hochdosischemotherapie und die Möglichkeit der Stammzelletransplantation haben die Heilungschance krebskranker Kinder in den letzen Jahrzehnten enorm verbessert. Aus diesem Grund erlangt die Berücksichtigung der Spätfolgen der Therapie eine größere Bedeutung. Es wurden die Zytostatika Cyclophosphamid und Thiotepa auf ihre Neurotoxizität im infantilen Rattengehirn untersucht. Dazu wurde Ratten im Alter von 7, 14, 21 oder 28 Tagen Cyclophosphamid (200-600mg/kg) oder Thiotepa (15-45 mg/kg) intraperitoneal injiziert. Nach einer Überlebenszeit von 4-24 Stunden wurden die Tiere getötet. Die Dichte degenerierter Zellen wurde lichtmikroskopisch in den nach De Olmos gefärbten Hirnschnitten mit Hilfe des stereologischen Dissektors ermittelt. Weiterhin wurden eine TUNEL-Färbung, elektronenmikroskopische sowie eine immunhistochemische Untersuchung für Caspase 3 und den Fas Rezeptor durchgeführt. Die Unterschiede zwischen den einzelnen Versuchsgruppen wurde mit Hilfe des Student`s t-Test auf ihre Signifikanz hin überprüft. Die Untersuchungen zur Zeit und Dosisabhängigkeit wurde mit Hilfe der ermittelten Gesamtscores und der Varianzanalyse (ANOVA) überprüft. Diese Untersuchung zeigte, dass eine Exposition mit den Zytostatika Cyclophosphamid und Thiotepa altersabhängig zu ausgeprägten Zellschädigungen im Gehirn führt. Besonders ausgeprägte Zelluntergänge fanden sich im Cortex, den thalamischen Kerngebieten, und dem Hippocampus. Ultrastrukturell ließen sich bereits kurz nach der Applikation des Zytostatikums anschwellende Dendriten als Hinweis auf einen exzitotoxischen Zelltodmechanismus nachweisen. Im Gegensatz dazu zeigten sich bei Tieren mit längerer Lebensdauer nach Exposition gegenüber dem Zytostatikum typische ultrastrukturelle Veränderungen wie man sie bei apoptotischem Zelltod finden kann. Mit dieser Untersuchung konnte gezeigt werden, dass die neurotoxische Wirkung der Zytostatika Cyclophosphamid und Thiotepa eine exzitotoxische und eine apoptotische Komponente aufweist.
Survival rates for children with cancer have increased dramatically over the past few decades. The expanded use of older agents, the development of new chemotherapeutic agents, the introduction of high dose chemotherapy and stem cell transplantation regimen have had a major impact on this improvement. These positive results have also focused increased attention on post-therapeutic effects of anticancer drugs. To investigate whether common cytotoxic drugs cause neurotoxic effects in the developing rat brain the following alkylated agents were administered to 7-day-old rats: cyclophosphamide (200–600mg/kg IP) and thiotepa (15– 45mg/kg IP). The brains were analysed at 4 to 24 hours. Quantitation of brain damage was performed in De Olmos cupric silver-stained sections using the stereological dissector method. Furthermore electron microscopy on plastic sections, TUNEL staining and immunohistochemistry for activated caspase 3 and Fas receptor was performed. Statistical analysis was performed by means of Student´s t test or one-way analysis of variance with subsequent pairwise comparison (Scheffé-test). Cytotoxic drugs produced widespread lesions within cortex, thalamus, hippocampal dentate gyrus, and caudate nucleus in a dose-dependent fashion. Early histological analysis demonstrated dendritic swelling and relative preservation of axonal terminals, which are morphological features indicating excitotoxicity. After longer survival periods, degenerating neurons displayed morphological features consistent with active cell death. These results demonstrate that anticancer drugs are potent neurotoxins in vivo; they activate excitotoxic mechanisms but also trigger active neuronal death.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Miksa, Michael. "N-Methyl-D-Aspartat-Antagonisten induzierten apoptotische Zelluntergänge im Gehirn junger Ratten". Doctoral thesis, Humboldt-Universität zu Berlin, Medizinische Fakultät - Universitätsklinikum Charité, 2004. http://dx.doi.org/10.18452/15030.

Texto completo
Resumen
Der wichtigste exzitatorische Neurotransmitter Glutamat spielt eine grosse Rolle in der Gehirnentwicklung, wie neuronale Migration und Synaptogenese. Ob glutamaterge Stimulation für das Überleben entwickelnder Neuronen notwendig ist, war bislang jedoch unbekannt. Um zu untersuchen, ob eine Hemmung von Glutamatrezeptoren im unreifen Gehirn zu Neurodegeneration führt, wurden Ratten im Alter von 1 bis 31 Tagen für 24 Stunden mit dem N-Methyl-D-Aspartat-(NMDA) Glutamatrezeptorantagonisten Dizocilpin (MK801) behandelt. Die Dichte neuronaler Degeneration wurde mikroskopisch in Kupfer-Silber- und TUNEL- gefärbten Hirnschnittpräparaten ermittelt und Unterschiede mittels ANOVA analysiert (Signifikanzniveau p
The predominant excitatory neurotransmitter glutamate plays a major role in certain aspects of neural development. However, whether developing neurons depend on glutamate for survival remains unknown. To investigate if deprivation of glutamate stimulation in the immature mammalian brain causes neuronal cell death (apoptosis), rat pups aged 0 to 30 days were treated for 24 hours with dizocilpine maleate (MK801), an N-methyl-D-aspartate-(NMDA) glutamate receptor antagonist. Density of neural degeneration was evaluated by a stereological dissector method in cupric-silver and TUNEL-stained brain slices. Groups were compared by ANOVA and significance considered at p
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Braun, Ariane [Verfasser], Michael Gutachter] Bucher, Oliver [Gutachter] Thews y Markus A. [Gutachter] [Weigand. "Die Wirkung selektiver Cyclooxygenase-1- und Cyclooxygenase-2-Inhibition auf die Expression renaler Transporter für organische Anionen und die Nierenfunktion nach Ischämie und Reperfusion im Rattenmodell / Ariane Braun ; Gutachter: Michael Bucher, Oliver Thews, Markus A. Weigand". Halle (Saale) : Universitäts- und Landesbibliothek Sachsen-Anhalt, 2020. http://nbn-resolving.de/urn:nbn:de:gbv:3:4-1981185920-331968.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Braun, Ariane [Verfasser], Michael [Gutachter] Bucher, Oliver [Gutachter] Thews y Markus A. [Gutachter] Weigand. "Die Wirkung selektiver Cyclooxygenase-1- und Cyclooxygenase-2-Inhibition auf die Expression renaler Transporter für organische Anionen und die Nierenfunktion nach Ischämie und Reperfusion im Rattenmodell / Ariane Braun ; Gutachter: Michael Bucher, Oliver Thews, Markus A. Weigand". Halle (Saale) : Universitäts- und Landesbibliothek Sachsen-Anhalt, 2020. http://d-nb.info/1210727382/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Mantovani, Michela [Verfasser] y Rolf [Akademischer Betreuer] Schubert. "Modulation of neocortical neurotransmissions by antidepressants and neuromodulatory drugs in human and rodent brain tissue and effect of electrical high-frequency stimulation in human neocortex = Modulation der Neokortikalen Neurotransmissionen durch Antidepressiva und Neuromodulatorische Substanzen im Hirngewebe von Menschen und Nagetieren und Wirkung der elektrischen Hochfrequenzstimulation im menschlichen Neokortex". Freiburg : Universität, 2012. http://d-nb.info/1123472971/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Libros sobre el tema "Brain wiring"

1

Astrocytes: Wiring the brain. Boca Raton: CRC Press, 2012.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Connectome: How the brain's wiring makes us who we are. Boston: Houghton Mifflin Harcourt, 2012.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Connectome: How the brain's wiring makes us who we are. London: Allen Lane, 2012.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Conkling, Winifred. Smart-wiring your baby's brain: What you can do to stimulate your child during the critical first three years. New York: Quill, 2001.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Scemes, Eliana y David C. Spray. Astrocytes: Wiring the Brain. Taylor & Francis Group, 2016.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Scemes, Eliana y David C. Spray. Astrocytes: Wiring the Brain. Taylor & Francis Group, 2016.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Scemes, Eliana y David C. Spray. Astrocytes: Wiring the Brain. Taylor & Francis Group, 2018.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Scemes, Eliana y David C. Spray. Astrocytes: Wiring the Brain. Taylor & Francis Group, 2011.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Neuronal Guidance: The Biology of Brain Wiring. Cold Spring Harbor Laboratory Press, 2010.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Sprenger, Marilee B. Wiring the Brain for Reading: Brain-Based Strategies for Teaching Literacy. Wiley & Sons, Incorporated, John, 2013.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Brain wiring"

1

Nieuwenhuys, Rudolf y Luis Puelles. "The ‘Wiring’ of the Brain". En Towards a New Neuromorphology, 273–300. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25693-1_11.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Lledo, Pierre-Marie. "Wiring New Neurons with Old Circuits". En Neurogenesis in the Adult Brain I, 371–93. Tokyo: Springer Japan, 2011. http://dx.doi.org/10.1007/978-4-431-53933-9_16.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

McMichael, Ryan. "Brain Drain: An Unintended Consequence of Wiring Brazil?" En Information Technology and World Politics, 145–59. New York: Palgrave Macmillan US, 2002. http://dx.doi.org/10.1057/9780230109223_11.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Nisar, Humaira, Aamir Saeed Malik, Rafi Ullah, Seong-O. Shim, Abdullah Bawakid, Muhammad Burhan Khan y Ahmad Rauf Subhani. "Tracking of EEG Activity Using Motion Estimation to Understand Brain Wiring". En Signal and Image Analysis for Biomedical and Life Sciences, 159–74. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10984-8_9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Brodal, Alf. "The “Wiring Patterns” of the Brain: Neuroanatomical Experiences and Their Implications for General Views of the Organization of the Brain". En The Neurosciences: Paths of Discovery, I, 123–40. Boston, MA: Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4612-2970-4_7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Brodal, Alf. "The “Wiring Patterns” of the Brain: Neuroanatomical Experiences and Their Implications for General Views of the Organization of the Brain". En The Neurosciences: Paths of Discovery, I, 122–40. Boston, MA: Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4684-6817-5_7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Molano-Mazón, M., A. J. Valiño-Perez, S. Sala, M. Martínez-García, J. Malo, F. T. Sommer, J. A. Hirsch y L. M. Martinez. "The Brain’s Camera. Optimal Algorithms for Wiring the Eye to the Brain Shape How We See". En Converging Clinical and Engineering Research on Neurorehabilitation II, 81–83. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46669-9_15.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Pizzi, Nicolino. "Classifying Magnetic Resonance Spectra of Brain Neoplasms Using Fuzzy and Robust Gold Standard Adjustments". En Neural Nets WIRN VIETRI-97, 252–56. London: Springer London, 1998. http://dx.doi.org/10.1007/978-1-4471-1520-5_24.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Fünfgeld, E. W. "Wirkung von Sermion auf das Computer EEG (Dynamic Brain Mapping) von Parkinson-Patienten mit hirnorganischem Psychosyndrom". En Sermion Forte Sermion Spezial, 158–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-76728-9_21.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

"Macaque Brain Wiring Diagram". En Encyclopedia of Computational Neuroscience, 1645. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-6675-8_100320.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Brain wiring"

1

Mizutani, H., H. Sagara, A. Takeuchi, T. Ohigashi, W. Yashiro, K. Uesugi, Y. Suzuki et al. "Nano-Resolution X-ray Tomography for Deciphering Wiring Diagram of Mammalian Brain". En THE 10TH INTERNATIONAL CONFERENCE ON X-RAY MICROSCOPY. AIP, 2011. http://dx.doi.org/10.1063/1.3625387.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Vassanelli, Stefano. "Wiring brain and artificial neurons through neural interfaces and memristive synapses: The first steps". En 2017 7th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI). IEEE, 2017. http://dx.doi.org/10.1109/iwasi.2017.7974206.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "Brain wiring"

1

Brain firing, but not wiring, is different in children with ADHD. Acamh, enero de 2018. http://dx.doi.org/10.13056/acamh.10505.

Texto completo
Resumen
When in a relaxed state, the brains of children and adolescents with ADHD tend to fire differently to those without the disorder, although there don’t seem to be changes in the physical connections or ‘wiring’ of their brains.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía