Tesis sobre el tema "Brain-Computer Interfaces (BCIs)"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores tesis para su investigación sobre el tema "Brain-Computer Interfaces (BCIs)".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Botrel, Loic [Verfasser], Andrea [Gutachter] Kübler y Johannes [Gutachter] Hewig. "Brain-computer interfaces (BCIs) based on sensorimotor rhythms - Evaluating practical interventions to improve their performance and reduce BCI inefficiency / Loic Botrel ; Gutachter: Andrea Kübler, Johannes Hewig". Würzburg : Universität Würzburg, 2018. http://d-nb.info/1168146445/34.
Texto completoYamamoto, Maria Sayu. "Addressing the Large Variability of EEG Data with Riemannian Geometry : Toward Designing Reliable Brain-Computer Interfaces". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASG098.
Texto completoRiemannian geometry-based Brain-Computer Interfaces (BCIs) have gained momentum over the last decade, demonstrating significant improvements in various BCI classification contexts. Despite these advancements, BCI systems remain insufficiently reliable for practical applications. One of the obstacles facing BCIs is the considerable variability of electroencephalogram (EEG). This variability is expected to be even more pronounced when BCI systems are used over multiple days or outside controlled laboratory environments. This thesis tackled the large variability of EEG data from a variety of angles on the Riemannian manifold of symmetric positive definite (SPD) matrices. Our six contributions can be divided into three categories. In the first section, we proposed two approaches to mitigate the variability of intra-user data distribution on an SPD manifold. The first contribution is an automatic outlier detection method based on spectral clustering for EEG SPD matrices, which could detect outliers more accurately than existing methods in a fully data-driven manner. The second contribution proposed a classification model that accounts for multimodal distributions of SPD matrices on a manifold. Our classifier significantly improved accuracy for a highly variable dataset compared to a standard unimodal classifier. The second section tackled inter-user variability by proposing two personalized parameters selection methods. The first method involves dimensionality reduction to project SPD matrices into more class-discriminating low-dimensional subspaces, significantly enhancing classification accuracy from the original high-dimensional space. The second method is a discriminative frequency band and time window selection approach based on class distinctiveness on an SPD manifold. Our selection approach substantially improved classification accuracy over both a baseline without personalized parameters selection and a well-known conventional selection method. In the final section, we focused on designing less variable classification features derived from neurophysiological measurements that have been underutilized in BCI studies. We propose novel SPD matrix representations that exploit multiple cross-frequency coupling as classification features, significantly improving classification accuracy over conventional Riemannian SPD representations. Additionally, we explored the effectiveness of removing a highly variable component of neural signal based on periodic/aperiodic parameterization of EEG signals. This could contribute to the development of neuroscientifically interpretable strategies for addressing large variability in EEG/BCI. Our empirical findings from these six contributions collectively pave the way for algorithm developments that more effectively address significant EEG variability, advancing the design of reliable BCI applications
Mindermann, Björn [Verfasser], Axel [Akademischer Betreuer] Gräser, Axel [Gutachter] Gräser y Canan [Gutachter] Basar-Eroglu. "Untersuchung eines hybriden Brain-Computer Interfaces (BCIs) zur optimalen Auslegung als Mensch-Maschine-Schnittstelle / Björn Mindermann ; Gutachter: Axel Gräser, Canan Basar-Eroglu ; Betreuer: Axel Gräser". Bremen : Staats- und Universitätsbibliothek Bremen, 2018. http://d-nb.info/1159699917/34.
Texto completoBhalotiya, Anuj Arun. "Brain Computer Interface (BCI) Applications: Privacy Threats and Countermeasures". Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc984122/.
Texto completoPetrucci, Maila. "Sistemi Brain Computer Interface: dalla macchina al paziente". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/10137/.
Texto completoDel, Monte Tamara. "Utilizzo dell'elettroencefalografia per la brain-computer interface". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/9220/.
Texto completoJeunet, Camille. "Understanding & Improving Mental-Imagery Based Brain-Computer Interface (Mi-Bci) User-Training : towards A New Generation Of Reliable, Efficient & Accessible Brain- Computer Interfaces". Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0221/document.
Texto completoMental-imagery based brain-computer interfaces (MI-BCIs) enable users to interact with theirenvironment using their brain-activity alone, by performing mental-imagery tasks. This thesisaims to contribute to the improvement of MI-BCIs in order to render them more usable. MIBCIsare bringing innovative prospects in many fields, ranging from stroke rehabilitation tovideo games. Unfortunately, most of the promising MI-BCI based applications are not yetavailable on the public market since an estimated 15 to 30% of users seem unable to controlthem. A lot of research has focused on the improvement of signal processing algorithms.However, the potential role of user training in MI-BCI performance seems to be mostlyneglected. Controlling an MI-BCI requires the acquisition of specific skills, and thus anappropriate training procedure. Yet, although current training protocols have been shown tobe theoretically inappropriate, very little research is done towards their improvement. Our mainobject is to understand and improve MI-BCI user-training. Thus, first we aim to acquire a betterunderstanding of the processes underlying MI-BCI user-training. Next, based on thisunderstanding, we aim at improving MI-BCI user-training so that it takes into account therelevant psychological and cognitive factors and complies with the principles of instructionaldesign. Therefore, we defined 3 research axes which consisted in investigating the impact of(1) cognitive factors, (2) personality and (3) feedback on MI-BCI performance. For each axis,we first describe the studies that enabled us to determine which factors impact MI-BCIperformance; second, we describe the design and validation of new training approaches; thethird part is dedicated to future work. Finally, we propose a solution that could enable theinvestigation of MI-BCI user-training using a multifactorial and dynamic approach: an IntelligentTutoring System
Sicbaldi, Marcello. "Brain-Computer Interface per riabilitazione motoria e cognitiva". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18556/.
Texto completoJUBIEN, Guillaume. "Decoding Electrocorticography Signals by Deep Learning for Brain-Computer Interface". Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-243903.
Texto completoBodranghien, Florian. "A novel brain-computer interface (BCI) to assist upper limb pointing movements". Doctoral thesis, Universite Libre de Bruxelles, 2017. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/261534.
Texto completoCommuniquer avec un ordinateur par le biais de la pensée n'est plus un sujet de science-fiction et les progrès effectués dans le domaine sont ahurissants. Ce travail montre la création d'une nouvelle plateforme de mesure de la performance des mouvements de pointage verticaux (eCAM test) ainsi que sa validation sur une cohorte de sujets sains. Suite à cela, il montre que la stimulation électrique fonctionnelle (FES) améliore la performance de ces mouvements des membres supérieurs. En plus il démontre que la stimulation anodale trancranienne en courant continu (atDCS) du cervelet a un effet sur les rythmes des signaux cérébraux ainsi que sur le tremblement postural d'un patient. De plus des données IRM recueillies durant ce travail permettront de mieux cerner les mécanismes d'action de la stimulation tDCS. Suite à cela, il a été montré que la fréquence et la complexité d'une tâche de tapping augmentent le tremblement postural du membre controlatéral. Le même effet est constaté pour la fatigue musculaire. Toutes ces avancées installent les fondements à la création d'une interface cerveau-machine multimodale basée sur la fusion de senseurs. Une phase de développement est maintenant nécessaire pour établir cette interface et la tester sur des sujets sains et malades.
Doctorat en Sciences biomédicales et pharmaceutiques (Médecine)
info:eu-repo/semantics/nonPublished
Szafir, Daniel J. "Non-Invasive BCI through EEG". Thesis, Boston College, 2010. http://hdl.handle.net/2345/1208.
Texto completoIt has long been known that as neurons fire within the brain they produce measurable electrical activity. Electroencephalography (EEG) is the measurement and recording of these electrical signals using sensors arrayed across the scalp. Though there is copious research in using EEG technology in the fields of neuroscience and cognitive psychology, it is only recently that the possibility of utilizing EEG measurements as inputs in the control of computers has emerged. The idea of Brain-Computer Interfaces (BCIs) which allow the control of devices using brain signals evolved from the realm of science fiction to simple devices that currently exist. BCIs naturally present themselves to many extremely useful applications including prosthetic devices, restoring or aiding in communication and hearing, military applications, video gaming and virtual reality, and robotic control, and have the possibility of significantly improving the quality of life of many disabled individuals. However, current BCIs suffer from many problems including inaccuracies, delays between thought, detection, and action, exorbitant costs, and invasive surgeries. The purpose of this research is to examine the Emotiv EPOC© System as a cost-effective gateway to non-invasive portable EEG measurements and utilize it to build a thought-based BCI to control the Parallax Scribbler® robot. This research furthers the analysis of the current pros and cons of EEG technology as it pertains to BCIs and offers a glimpse of the future potential capabilities of BCI systems
Thesis (BA) — Boston College, 2010
Submitted to: Boston College. College of Arts and Sciences
Discipline: Computer Science Honors Program
Discipline: Computer Science
Allison, Brendan. "P3 or not P3 : toward a better P300 BCI /". Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2003. http://wwwlib.umi.com/cr/ucsd/fullcit?p3090451.
Texto completoClanton, Samuel T. "Brain-Computer Interface Control of an Anthropomorphic Robotic Arm". Research Showcase @ CMU, 2011. http://repository.cmu.edu/dissertations/170.
Texto completoLind, Carl Jonas. "Brain Computer Interface (BCI) : - Översiktsartikel utifrån ett neuropsykologiskt perspektiv med tillämpningar och enkätundersökning". Thesis, Stockholms universitet, Psykologiska institutionen, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-186099.
Texto completoBelluomo, Paola. "New proposals for EEG and fMRI based Brain Computer Interface technology". Doctoral thesis, Università di Catania, 2013. http://hdl.handle.net/10761/1305.
Texto completoSchwartz, Nicholas Edward. "P300-Based BCI Performance Prediction through Examination of Paradigm Manipulations and Principal Components Analysis". Digital Commons @ East Tennessee State University, 2010. https://dc.etsu.edu/etd/1775.
Texto completoBoldeanu, Silvia. "Merging brain-computer interfaces and virtual reality : A neuroscientific exploration". Thesis, Högskolan i Skövde, Institutionen för biovetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-15774.
Texto completoMattiaccia, Francesca. "Brain Computer Interface: una nuova tecnologia per la medicina riabilitativa". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19014/.
Texto completoJarmolowska, Joanna. "Nuovi sistemi per la comunicazione alternativa basati su Brain Computer Interface". Doctoral thesis, Università degli studi di Trieste, 2014. http://hdl.handle.net/10077/10149.
Texto completoLa comunicazione alternativa attraverso le BCIs può risultare uno strumento per agevolare le condizioni di vita di pazienti affetti dai disturbi neurologici. La comunicazione via BCI è ancora molto più lenta rispetto alla comunicazione con il linguaggio naturale. L’obiettivo di questo lavoro di tesi si inserisce in tale ambito, consistendo nello sviluppo di nuove applicazioni in grado di migliorare la velocità di comunicazione con utilizzo delle BCIs. Sono stati sviluppati due sistemi di comunicazione alternativa basati sulla componente P300. Il primo sistema chiamato ‘Multimenu’ permette una selezione veloce di messaggi e di comandi impostati in una struttura gerarchica. Il secondo sistema di tipo predittivo, denominato PolyMorph, grazie ad algoritmi appositamente sviluppati, predice i caratteri e/o le parole successivi a quelli già selezionati in precedenza.
XXV Ciclo
1980
Hagerty-Hoff, Christopher V. "MODIFICATION AND EVALUATION OF A BRAIN COMPUTER INTERFACE SYSTEM TO DETECT MOTOR INTENTION". VCU Scholars Compass, 2015. http://scholarscompass.vcu.edu/etd/3746.
Texto completoCISOTTO, GIULIA. "Movement-related desynchronization detection in Brain-Computer Interface applications for post-stroke motor rehabilitation". Doctoral thesis, Università di Padova, 2014. http://hdl.handle.net/10281/367531.
Texto completoErdogan, Hasan Balkar. "A Design And Implementation Of P300 Based Brain-computer Interface". Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12611141/index.pdf.
Texto completos) and Bayesian decision. These methods are independently applied to the row-column intensification groups of P300 speller to observe the differences in human perception to these two visual stimulation types. It is observed from the investigated datasets that the prediction accuracies in these two groups are different for each subject even for optimum classification parameters. Furthermore, in these datasets, the classification accuracy was improved when the signals are preprocessed with Wiener filtering. With this method, the test characters are predicted with 100% accuracy in 4 trial repetitions in P300 Speller dataset of BCI Competition II. Besides, only 8 trials are needed to predict the target character with the designed BCI system.
Mondelli, Giuseppina Ester. "Brain Computer Interface: una nuova frontiera per la riabilitazione del paziente". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Buscar texto completoRenfrew, Mark E. "A Comparison of Signal Processing and Classification Methods for Brain-Computer Interface". Case Western Reserve University School of Graduate Studies / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=case1246474708.
Texto completoGeorge, Laurent. "Contribution to the study of active and passive brain-computer interfaces for interacting with virtual environments based on EEG and mental workkload". Rennes, INSA, 2012. http://www.theses.fr/2012ISAR0035.
Texto completoA Brain Computer Interface (BCI) is a communication system between a user and a computer in which the carried message is the measured user's brain activity. BCIs offer a novel kind of interaction "by thought" for different application contexts such as robotics, domotics, multimedia, virtual reality, and video games. Ln this work we focus on the use of BCIs for interacting with virtual environments. We also focus on the use of brain signals that are related to the user's mental workload or closely related states. First, we have studied the electroencephalography (EEG) markers and the BCI setups that can be used to read out in real-ti me the user mental states such as mental workload, concentration and relaxation states. We have studied them in the «active» BCI context, i. E. , when the user deliberately tries to control his/her brain activity. We have designed and evaluated an active BCI system based on relaxation and concentration mental states. Then we have explored the use of "passive" BCIs to improve the use of an active BCI. Ln passive BCIs the user does not try to control his/ her brain activity, and he/she can remain mainly concerned by his/her primary task. The brain activity is analysed to read out the user mental state which is used to adapt the application. We have introduced the concept of the BCI inhibitor which can be defined as a passive BCI system that pauses the active BCI until the user's "brain" is ready. Then we have studied the use of passive BCIs based on mental workload in a virtual reality context to assist the user when a high workload is detected. To illustrate this approach we have designed a visuo-haptic virtual reality setup in which a haptic guiding system is automatically toggled based on mental workload during a path-following task. We have conducted an experiment to evaluate the operability and efficiency of the proposed system. Results suggest that the proposed passive BCI system is able to measure a mental workload index that seems well correlated with the difficulty of the task. Activation of guides based on the measured mental workload index allowed to increase task performances by significantly reducing the number of collisions. We have finally studied how our approach could be applied to virtual reality and medical applications. We have proposed to use a passive BCI to adapt in real-time a medical simulator to the user's mental states. If the user becomes too heavily engaged in the medical operation, some visual and haptic cues are automatically activated. This could pave the way to a future generation of «smart» medical simulator taking into account brain signals and mental states in training procedures
Gregori, Federica. "Sistemi di comunicazione alternativa basati su Brain Computer Interface: stato dell’arte e prospettive future". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/19912/.
Texto completoCisotto, Giulia. "Movement-Related Desynchronization in EEG-based Brain-Computer Interface applications for stroke motor rehabilitation". Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423860.
Texto completoL'identificazione e la quantificazione in tempo reale dei correlati cerebrali del movimento e' uno degli aspetti piu' critici nell'ambito delle cosiddette Brain-Computer Interface (BCI), ovvero quelle applicazioni in cui un individuo, dopo uno specifico percorso di apprendimento, impara a controllare un computer (o un altro dispositivo) tramite la modulazione volontaria della sua attivita' cerebrale, con lo scopo finale di trarre vantaggio dall'utilizzo dell'apparecchiatura cosi' controllata. La BCI e' solo uno delle molteplici tecniche di riabilitazione motoria oggigiorno disponibili. Indipendentemente dalla specifica tecnica scelta, il metodo riabilitativo mira a recuperare le funzionalita' del cosiddetto sistema sensorimotorio, quel complesso di aree corticali e strutture sotto-corticali che permette ad un individuo di ricevere impulsi somatosensoriali dal mondo esterno, di elaborare la risposta motoria piu' opportuna e realizzarla grazie agli attuatori finali del movimento rappresentati dai muscoli. Per perseguire questo obbiettivo, la maggior parte delle tecniche riabilitative, ivi compresa la BCI, pongono grande attenzione alla promozione e sfruttamento di quei processi spontanei che il cervello costantemente impiega per svolgere le sue attivita', adattarsi a nuove condizioni ambientali e anche cercare di recuperare le abilita' perse a seguito di un evento dannoso quale un ictus. Questi fenomeni vengono generalmente riassunti nel termine neuroplasticita' e sono stati paradossalmente sfruttati per anni nella pratica clinica, ma solo recentemente sono diventati materia di rigorosi e approfonditi studi scientici portati avanti da neuroscienziati provenienti da ogni tipo di formazione (neurologi, neurofisiologi, biologi, ingegneri, neuropsicologi, ...). Nel particolare contesto della riabilitazione motoria che ambisce essenzialmente a promuovere fenomeni di (ri-)apprendimento motorio da parte del paziente colpito da ictus, la letteratura ha fermamente indicato il condizionamento operante come la strategia piu' efficace per favorire i processi di plasticita' corticale e, di conseguenza, il recupero, seppur parziale, della motricita'. Il condizionamento operante si applica tramite la ripetitiva associazione di un comportamento corretto (scorretto) effettuato dal soggetto e uno stimolo gratificante (penalizzante) dato contestualmente o in un tempo appena successivo all'esecuzione del comportamento. Sfruttando il fondamentale meccanismo di apprendimento del cervello per prove ed errori, esso impara a utilizzare il comportamento corretto per svolgere il compito richiesto. Tale comportamento corretto e', in questo caso, lo sfruttamento di risorse ridondanti prima dell'ictus ma ancora sane dopo l'evento per controllare le funzioni motorie rimaste indebolite o completamente perse a seguito del danno cerebrale. Data la fondamentale importanza della contingenza tra l'attivita' cerebrale del paziente coinvolto nell'esperimento e lo stimolo di feedback, un robusto algoritmo di elaborazione del segnale cerebrale si rende fortemente necessario. In questo lavoro di tesi e' stata analizzata una particolare applicazione BCI per la riabilitazione motoria di pazienti lievemente o moderatamente aetti da emiparesi dovuta a ictus e sono stati proposti degli algoritmi con la relativa soluzione software per la realizzazione ottimale della strategia di apprendimento operante durante il recupero di un movimento di raggiungimento. Il vincolo principale da considerare per ottenere questo tipo di risultato e' la possibilita' di identificare e quanticare il correlato neurofisiologico legato al movimento, la cosiddetta desincronizzazione movimento correlata, in tempo reale durante l'esecuzione del movimento da parte del soggetto. Nell'ottica del condizionamento operante, un dispositivo haptico inserito nel sistema funge da feedback positivo che aiuta il paziente a completare il movimento nel solo caso in cui venga riconosciuta la desincronizzazione. In caso contrario, il soggetto non riceve alcun feedback o il suo movimento viene reso piu' difficile. Dopo un primo capitolo introduttivo sul sistema sensorimotorio arricchito con alcune informazioni riguardanti la particolare patologia in questione, il secondo capitolo introduce gli elementi fondamentali della piattaforma sperimentale utilizzata, ovvero l'elettroencefalogramma (EEG) e la BCI nella sua accezione generale, accennando anche ai maggiori successi in questo ambito delle ICT applicate alla medicina riabilitativa. Nel capitolo 3 viene descritta la particolare piattaforma BCI basata su EEG menzionata sopra e nei capitoli 4 e 5 vengono presentate ampiamente le analisi, le procedure e i risultati sviluppati ed ottenuti in questi anni di studio. In particolare, nella prima parte del capitolo 4 viene illustrato l'algoritmo con cui e' possibile identificare e rimuovere in tempo reale un particolare evento di disturbo che puo' verificarsi durante la registrazione EEG, il cosiddetto artefatto electrode pop dovuto al temporaneo sollevamento di un elettrodo che causa abnormi valori negativi nelle tracce EEG. Una volta rimosso questo tipo di eventp, il segnale viene filtrato e nella seconda parte del capitolo 4 viene presentata un'esaustiva analisi dell'energia delle tracce EEG acquisite durante la registrazione dell'esperimento di cui sopra in soggetti sani di controllo e in alcuni pazienti reduci da ictus. Inoltre, viene suggerita una versione modificata del piu' noto metodo di quantificazione della desincronizzazione fornito da Pfurtscheller e colleghi a partire dagli anni '70 i cui risultati promettenti sono forniti e discussi nel capitolo finale della tesi. La tesi si conclude con una breve sezione dedicata alle prospettive future di applicazione della piattaforma con l'integrazione delle soluzioni software apportate da questa tesi e alle questioni ancora aperte da risolvere al fine di ottimizzare il sistema BCI in tutti i suoi aspetti in modo da realizzare nel modo piu efficace il condizionamento operante e promuovere quei processi spontanei che sottostanno al recupero funzionale della motricita'.
Mendes, Gabriel Alves Vasiljevic. "Brain-computer interface games based on consumer-grade electroencephalography devices: systematic review and controlled experiments". PROGRAMA DE P?S-GRADUA??O EM SISTEMAS E COMPUTA??O, 2017. https://repositorio.ufrn.br/jspui/handle/123456789/24003.
Texto completoApproved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2017-10-06T23:26:09Z (GMT) No. of bitstreams: 1 GabrielAlvesVasiljevicMendes_DISSERT.pdf: 3791566 bytes, checksum: e847396390a6b6ca2128eefd4423f561 (MD5)
Made available in DSpace on 2017-10-06T23:26:09Z (GMT). No. of bitstreams: 1 GabrielAlvesVasiljevicMendes_DISSERT.pdf: 3791566 bytes, checksum: e847396390a6b6ca2128eefd4423f561 (MD5) Previous issue date: 2017-07-31
Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico (CNPq)
Brain-computer interfaces (BCIs) are specialized systems that allow users to control a computer or a machine using their brain waves. BCI systems allow patients with severe physical impairments, such as those suffering from amyotrophic lateral sclerosis, cerebral palsy and locked-in syndrome, to communicate and regain physical movements with the help of specialized equipment. With the development of BCI technology in the second half of the 20th century and the advent of consumer-grade BCI devices in the late 2000s, brain-controlled systems started to find applications not only in the medical field, but in areas such as entertainment. One particular area that is gaining more evidence due to the arrival of consumer-grade devices is the field of computer games, which has become increasingly popular in BCI research as it allows for more user-friendly applications of BCI technology in both healthy and unhealthy users. However, numerous challenges are yet to be overcome in order to advance in this field, as the origins and mechanics of the brain waves and how they are affected by external stimuli are not yet fully understood. In this sense, a systematic literature review of BCI games based on consumer-grade technology was performed. Based on its results, two BCI games, one using attention and the other using meditation as control signals, were developed in order to investigate key aspects of player interaction: the influence of graphical elements on attention and control; the influence of auditory stimuli on meditation and work load; and the differences both in performance and multiplayer game experience, all in the context of neurofeedback-based BCI games.
Calore, E. "TOWARDS STEADY-STATE VISUALLY EVOKED POTENTIALS BRAIN-COMPUTER INTERFACES FOR VIRTUAL REALITY ENVIRONMENTS EXPLICIT AND IMPLICIT INTERACTION". Doctoral thesis, Università degli Studi di Milano, 2014. http://hdl.handle.net/2434/233319.
Texto completoBarachant, Alexandre. "Commande robuste d'un effecteur par une interface cerveau machine EEG asynchrone". Thesis, Grenoble, 2012. http://www.theses.fr/2012GRENT112/document.
Texto completoThis thesis presents the development of a Brain computer Interface (BCI) based on EEG signal, allowing its user to communicates with an external device solely by the mean of brain activity. This work as been conduct with the goal of designing a robust, ergonomic and easy to use BCI system for real life applications.In this context, a brain-switch has been developed, allowing it's user to send a binary command to a homeautomation system. This goal can only be achieved by developing new methodologies and algorithms, while testing them on real life experiments. Therefore, this works is two part, the first one is focus on the design of new algorithms, the secondon the design of experimental paradigm
Venot, Tristan. "Design and evaluation of a multimodal control of a robotic arm with a Brain Computer Interface". Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS418.
Texto completoBrain-machine interfaces (BMIs) left the realm of science fiction in the 1970s with Jacques Vidal's reflection on the feasibility of using electroencephalogram signals as a means of communication between the brain and external devices. During the development of this research field, various approaches have been explored to create a true interface between the brain and a machine. The methods of data acquisition have taken different forms, and with the improvement of computer capabilities and the advent of machine learning, methods to classify brain data have become more refined, capable of capturing complex information from brain data. A promising avenue to assist patients lies in the rehabilitation process following a stroke. By performing movements or providing feedback to patients about their brain activity, it is possible to help their brains adapt to neuronal deficits and aid them in overcoming their impairments. In this context, BMIs act as a support, like crutches, during the rehabilitation period. However, in this context, one challenge is to create differentiable brain patterns at the EEG level. To create these patterns, cognitive tasks that modify brain activity profiles are relied upon. One such task is motor imagery of limb movements, where subjects imagine movements without executing them. This particular task is unfamiliar to many and thus becomes complex to execute. One way to assist subjects in performing it is to provide evocative feedback in the BMI context, such as a robotic arm. Nurturing a sense of control over the arm and its movements helps elicit more differentiable brain patterns. Nevertheless, due to current limitations in the degree of control permitted by BMI systems, full control of a robotic arm is not yet possible. A solution is to couple the BMI with another technology to increase the degree of control and reinforce subjects' sense of agency over the arm. Among the technologies offering insights into subjects' intentions without requiring movement, the eye tracker appears to be an elegant solution. The integration of these two components creates a hybrid BCI system capable of intuitively controlling the arm. This hybridization has been demonstrated as a proof of concept in the BMI field, but the impact of integrating these modalities on the brain remains to be studied. A better understanding of how to shape the interaction between the eye tracker, BMI, and robotic arm would shed light on why good performances are obtained and how to elicit these discriminant brain patterns. The work in this thesis focused on creating an experimental platform that intertwines these different modalities to establish robust control over the arm. Through an experimental protocol, we assessed how to define the interaction through in-depth analysis, covering the system's pure performance and the physiological and neurophysiological responses of subjects. We found that consistency is crucial in the interaction, and we demonstrated the importance of movement in eliciting brain responses in this particular context. Our work paves the way for a better understanding of the brain's dynamics in controlling external devices in a multimodal setup. Additionally, we propose a new framework for controlling a robotic arm using a hybrid BCI. The thesis is structured into five chapters, covering the overall context of BMIs, the development of the experimental platform, the results from the experimental protocol and their discussion, and finally, a general conclusion
Petrini, Alexander y Henrik Forslin. "Evaluation of Player Performance with a Brain Computer Interface and Eye TrackingControl in an Entertainment Game Application". Thesis, Blekinge Tekniska Högskola, Institutionen för kreativa teknologier, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-12928.
Texto completoGergondet, Pierre. "Commande d’humanoïdes robotiques ou avatars à partir d’interface cerveau-ordinateur". Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20134/document.
Texto completoThis thesis is part of the European project VERE (Virtual Embodiment and Robotics re-Embodiment). The goal is to propose a software framework integrating a set of control strategies and information feedback based on the "task function" in order to embody a human operator within a humanoid robot or a virtual avatar using his thoughts. The underlying problems can be shown by considering the following demonstrator. Let us imagine an operator equipped with a brain-computer interface; the goal is to extract the though of the human operator from these signals, then translate it into robotic commands and finally to give an appropriate sensory feedback to the operator so that he can appropriate the "body", robotic or virtual, of his avatar. A cinematographic illustration of this objective can be seen in recent movies such as "Avatar" or "Surrogates". In this thesis, we start by discussing specific problems that we encountered while using a brain-computer interface for the control of robots or avatars, e.g. the arising need for multiple behaviours or the specific problems induced by the sensory feedback provided by the robot. We will then introduce our main contribution which is the concept of object-oriented brain-computer interface for the control of humanoid robot. We will then present the results of a study regarding the role of sound in the embodiment process. Finally, we show some preliminary experiments where we used electrocorticography (ECoG)~--~a technology used to acquire signals from the brain that is implanted within the cranium~--~to control a humanoid robot
Montgomery, Mason. "OPTIMIZATION OF FEATURE SELECTION IN A BRAIN-COMPUTER INTERFACE SWITCH BASED ON EVENT-RELATED DESYNCHRONIZATION AND SYNCHRONIZATION DETECTED BY EEG". VCU Scholars Compass, 2012. http://scholarscompass.vcu.edu/etd/2786.
Texto completoLiao, James Yu-Chang. "Evaluating Multi-Modal Brain-Computer Interfaces for Controlling Arm Movements Using a Simulator of Human Reaching". Case Western Reserve University School of Graduate Studies / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=case1404138858.
Texto completoSi, Mohammed Hakim. "Design and Study of Interactive Systems based on Brain- Computer Interfaces and Augmented Reality". Thesis, Rennes, INSA, 2019. http://www.theses.fr/2019ISAR0024.
Texto completoBrain-Computer Interfaces (BCI) enable interaction directly from brain activity. Augmented Reality (AR) on the other hand, enables the integration of virtual elements in the real world. In this thesis, we aimed at designing interactive systems associating BCIs and AR, to offer new means of hands-free interaction with real and virtual elements. In the first part, we have studied the possibility to extract different BCI paradigms in AR. We have shown that it was possible to use Steady-State Visual Evoked Potentials (SSVEP) in AR. Then, we have studied the possibility to extract Error-Related Potentials (ErrPs) in AR, showing that ErrPs were elicited in users facing errors, often occurring in AR. In the second part, we have deepened our research in the use of SSVEP for direct interaction in AR. We have proposed HCCA, a new algorithm for self-paced detection of SSVEP responses. Then, we have studied the design of AR interfaces, for the development of intuitive and efficient interactive systems. Lastly, we have illustrated our results, through the development of a smart-home system combining SSVEP and AR, which integrates in a commercially available smart-home system
Avilov, Oleksii. "Deep learning methods for motor imagery detection from raw EEG : applications to brain-computer interfaces". Electronic Thesis or Diss., Université de Lorraine, 2021. http://www.theses.fr/2021LORR0032.
Texto completoThis thesis presents three contributions to improve the recognition of motor imaginary movements used by numerous brain-computer interfaces (BCI) as types of interaction. First of all, we propose to estimate the quality of motor images by detecting outliers and removing them before training. Next, we study the feature selection for seven different motor imaginary movements. Finally, we present a deep learning architecture based on the principles of EEGNet network applied directly on raw electroencephalographic signals and adapted to the number of electrodes. We show in particular its benefits for improving the detection of intraoperative awareness and other applications
Dornhege, Guido. "Increasing information transfer rates for brain-computer interfacing". Phd thesis, [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=98051276X.
Texto completoYoung, Daniel R. "Restoring Thought-Controlled Movements After Paralysis: Developing Brain Computer Interfaces For Control Of Reaching Using Functional Electrical Stimulation". Case Western Reserve University School of Graduate Studies / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=case1530808401714587.
Texto completoBocquelet, Florent. "Vers une interface cerveau-machine pour la restauration de la parole". Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAS008/document.
Texto completoRestoring natural speech in paralyzed and aphasic people could be achieved using a brain-computer interface controlling a speech synthesizer in real-time. The aim of this thesis was thus to develop three main steps toward such proof of concept.First, a prerequisite was to develop a speech synthesizer producing intelligible speech in real-time with a reasonable number of control parameters. Here we chose to synthesize speech from movements of the speech articulators since recent studies suggested that neural activity from the speech motor cortex contains relevant information to decode speech, and especially articulatory features of speech. We thus developed a speech synthesizer that produced intelligible speech from articulatory data. This was achieved by first recording a large dataset of synchronous articulatory and acoustic data in a single speaker. Then, we used machine learning techniques, especially deep neural networks, to build a model able to convert articulatory data into speech. This synthesizer was built to run in real time. Finally, as a first step toward future brain control of this synthesizer, we tested that it could be controlled in real-time by several speakers to produce intelligible speech from articulatory movements in a closed-loop paradigm.Second, we investigated the feasibility of decoding speech and articulatory features from neural activity essentially recorded in the speech motor cortex. We built a tool that allowed to localize active cortical speech areas online during awake brain surgery at the Grenoble Hospital and tested this system in two patients with brain cancer. Results show that the motor cortex exhibits specific activity during speech production in the beta and gamma bands, which are also present during speech imagination. The recorded data could be successfully analyzed to decode speech intention, voicing activity and the trajectories of the main articulators of the vocal tract above chance.Finally, we addressed ethical issues that arise with the development and use of brain-computer interfaces. We considered three levels of ethical questionings, dealing respectively with the animal, the human being, and the human species
Burger, Christiaan. "A novel method of improving EEG signals for BCI classification". Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/95984.
Texto completoENGLISH ABSTRACT: Muscular dystrophy, spinal cord injury, or amyotrophic lateral sclerosis (ALS) are injuries and disorders that disrupts the neuromuscular channels of the human body thus prohibiting the brain from controlling the body. Brain computer interface (BCI) allows individuals to bypass the neuromuscular channels and interact with the environment using the brain. The system relies on the user manipulating his neural activity in order to control an external device. Electroencephalography (EEG) is a cheap, non-invasive, real time acquisition device used in BCI applications to record neural activity. However, noise, known as artifacts, can contaminate the recording, thus distorting the true neural activity. Eye blinks are a common source of artifacts present in EEG recordings. Due to its large amplitude it greatly distorts the EEG data making it difficult to interpret data for BCI applications. This study proposes a new combination of techniques to detect and correct eye blink artifacts to improve the quality of EEG for BCI applications. Independent component analysis (ICA) is used to separate the EEG signals into independent source components. The source component containing eye blink artifacts are corrected by detecting each eye blink within the source component and using a trained wavelet neural network (WNN) to correct only a segment of the source component containing the eye blink artifact. Afterwards, the EEG is reconstructed without distorting or removing the source component. The results show a 91.1% detection rate and a 97.9% correction rate for all detected eye blinks. Furthermore for channels located over the frontal lobe, eye blink artifacts are corrected preserving the neural activity. The novel combination overall reduces EEG information lost, when compared to existing literature, and is a step towards improving EEG pre-processing in order to provide cleaner EEG data for BCI applications.
AFRIKAANSE OPSOMMING: Spierdistrofie, ’n rugmurgbesering, of amiotrofiese laterale sklerose (ALS) is beserings en steurnisse wat die neuromuskulêre kanale van die menslike liggaam ontwrig en dus verhoed dat die brein die liggaam beheer. ’n Breinrekenaarkoppelvlak laat toe dat die neuromuskulêre kanale omlei word en op die omgewing reageer deur die brein. Die BCI-stelsel vertrou op die gebruiker wat sy eie senuwee-aktiwiteit manipuleer om sodoende ’n eksterne toestel te beheer. Elektro-enkefalografie (EEG) is ’n goedkoop, nie-indringende, intydse dataverkrygingstoestel wat gebruik word in BCI toepassings. Nie net senuwee aktiwiteit nie, maar ook geraas , bekend as artefakte word opgeneem, wat dus die ware senuwee aktiwiteit versteur. Oogknip artefakte is een van die algemene artefakte wat teenwoordig is in EEG opnames. Die groot omvang van hierdie artefakte verwring die EEG data wat dit moeilik maak om die data te ontleed vir BCI toepassings. Die studie stel ’n nuwe kombinasie tegnieke voor wat oogknip artefakte waarneem en regstel om sodoende die kwaliteit van ’n EEG vir BCI toepassings te verbeter. Onafhanklike onderdeel analise (Independent component analysis (ICA)) word gebruik om die EEG seine te skei na onafhanklike bron-komponente. Die bronkomponent wat oogknip artefakte bevat word reggestel binne die komponent en gebruik ’n ervare/geoefende golfsenuwee-netwerk om slegs ’n deel van die komponent wat die oogknip artefak bevat reg te stel. Daarna word die EEG hervorm sonder verwringing of om die bron-komponent te verwyder. Die resultate toon ’n 91.1% opsporingskoers en ’n 97.9% regstellingskoers vir alle waarneembare oogknippe. Oogknip artefakte in kanale op die voorste lob word reggestel en behou die senuwee aktiwiteit wat die oorhoofse EEG kwaliteit vir BCI toepassings verhoog.
Mladenovic, Jelena. "Computational Modeling of User States and Skills for Optimizing BCI Training Tasks". Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0131.
Texto completoBrain-Computer Interfaces (BCIs) are systems that enable a person to manipulate an external device with only brain activity, often using ElectroEncephaloGraphgy (EEG). Although there is great medical potential (communication and mobility assistance, as well as neuro-rehabilitation of those who lost motor functions), BCIs are rarely used outside of laboratories. This is mostly due to users’ variability from their brain morphologies to their changeable psychological states, making it impossible to create one system that works with high success for all. The success of a BCI depends tremendously on the user’s ability to focus to give mental commands, and the machine’s ability to decode such mental commands. Most approaches consist in either designing more intuitive and immersive interfaces to assist the users to focus, or enhancing the machine decoding properties. The latest advances in machine decoding are enabling adaptive machines that try to adjust to the changeable EEG during the BCI task. This thesis is unifying the adaptive machine decoding approaches and the interface design through the creation of adaptive and optimal BCI tasks according to user states and traits. Its purpose is to improve the performance and usability of BCIs and enable their use outside of laboratories. To such end, we first created a taxonomy for adaptive BCIs to account for the various changeable factors of the system. Then, we showed that by adapting the task difficulty we can influence a state of flow, i.e., an optimal state of immersion, control and pleasure. which in turn correlates with BCI performance. Furthermore, we have identified the user traits that can benefit from particular types of task difficulties. This way we have prior knowledge that can guide the task adaptation process, specific to each user trait. As we wish to create a generic adaptation rule that works for all users, we use a probabilistic Bayesian model, called Active Inference used in neuroscience to computationally model brain behavior. When we provide such probabilistic model to the machine, it becomes adaptive in such a way that it mimics brain behavior. That way, we can achieve an automatic co-adaptive BCI and potentially get a step closer into using BCIs in our daily lives
Akinci, Berna. "Realization Of A Cue Based Motor Imagery Brain Computer Interface With Its Potential Application To A Wheelchair". Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612607/index.pdf.
Texto completoMileros, Martin D. "A Real-Time Classification approach of a Human Brain-Computer Interface based on Movement Related Electroencephalogram". Thesis, Linköping University, Department of Mechanical Engineering, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2824.
Texto completoA Real-Time Brain-Computer Interface is a technical system classifying increased or decreased brain activity in Real-Time between different body movements, actions performed by a person. Focus in this thesis will be on testing algorithms and settings, finding the initial time interval and how increased activity in the brain can be distinguished and satisfyingly classified. The objective is letting the system give an output somewhere within 250ms of a thought of an action, which will be faster than a persons reaction time.
Algorithms in the preprocessing were Blind Signal Separation and the Fast Fourier Transform. With different frequency and time interval settings the algorithms were tested on an offline Electroencephalographic data file based on the "Ten Twenty" Electrode Application System, classified using an Artificial Neural Network.
A satisfying time interval could be found between 125-250ms, but more research is needed to investigate that specific interval. A reduction in frequency resulted in a lack of samples in the sample window preventing the algorithms from working properly. A high frequency is therefore proposed to help keeping the sample window small in the time domain. Blind Signal Separation together with the Fast Fourier Transform had problems finding appropriate correlation using the Ten-Twenty Electrode Application System. Electrodes should be placed more selectively at the parietal lobe, in case of requiring motor responses.
Lotte, Fabien. "Study of Electroencephalographic Signal Processing and Classification Techniques towards the use of Brain-Computer Interfaces in Virtual Reality Applications". Phd thesis, INSA de Rennes, 2008. http://tel.archives-ouvertes.fr/tel-00356346.
Texto completoCarrara, Igor. "Méthodes avancées de traitement des BCI-EEG pour améliorer la performance et la reproductibilité de la classification". Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ4033.
Texto completoElectroencephalography (EEG) non-invasively measures the brain's electrical activity through electromagnetic fields generated by synchronized neuronal activity. This allows for the collection of multivariate time series data, capturing a trace of the brain electrical activity at the level of the scalp. At any given time instant, the measurements recorded by these sensors are linear combinations of the electrical activities from a set of underlying sources located in the cerebral cortex. These sources interact with one another according to a complex biophysical model, which remains poorly understood. In certain applications, such as surgical planning, it is crucial to accurately reconstruct these cortical electrical sources, a task known as solving the inverse problem of source reconstruction. While intellectually satisfying and potentially more precise, this approach requires the development and application of a subject-specific model, which is both expensive and technically demanding to achieve.However, it is often possible to directly use the EEG measurements at the level of the sensors and extract information about the brain activity. This significantly reduces the data analysis complexity compared to source-level approaches. These measurements can be used for a variety of applications, including monitoring cognitive states, diagnosing neurological conditions, and developing brain-computer interfaces (BCI). Actually, even though we do not have a complete understanding of brain signals, it is possible to generate direct communication between the brain and an external device using the BCI technology. This work is centered on EEG-based BCIs, which have several applications in various medical fields, like rehabilitation and communication for disabled individuals or in non-medical areas, including gaming and virtual reality.Despite its vast potential, BCI technology has not yet seen widespread use outside of laboratories. The primary objective of this PhD research is to try to address some of the current limitations of the BCI-EEG technology. Autoregressive models, even though they are not completely justified by biology, offer a versatile framework to effectively analyze EEG measurements. By leveraging these models, it is possible to create algorithms that combine nonlinear systems theory with the Riemannian-based approach to classify brain activity. The first contribution of this thesis is in this direction, with the creation of the Augmented Covariance Method (ACM). Building upon this foundation, the Block-Toeplitz Augmented Covariance Method (BT-ACM) represents a notable evolution, enhancing computational efficiency while maintaining its efficacy and versatility. Finally, the Phase-SPDNet work enables the integration of such methodologies into a Deep Learning approach that is particularly effective with a limited number of electrodes.Additionally, we proposed the creation of a pseudo online framework to better characterize the efficacy of BCI methods and the largest EEG-based BCI reproducibility study using the Mother of all BCI Benchmarks (MOABB) framework. This research seeks to promote greater reproducibility and trustworthiness in BCI studies.In conclusion, we address two critical challenges in the field of EEG-based brain-computer interfaces (BCIs): enhancing performance through advanced algorithmic development at the sensor level and improving reproducibility within the BCI community
Hellrung, Lydia. "Softwareframework zur universellen Methodenentwicklung für ein fMRT- BCI: Adaptive Paradigmen und Echtzeitdatenanalyse". Doctoral thesis, Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-165443.
Texto completoBerry, Daniel Ryan. "Manipulating Paradigm and Attention via a Mindfulness Meditation Training Program Improves P300-Based BCI". Digital Commons @ East Tennessee State University, 2011. https://dc.etsu.edu/etd/1329.
Texto completoSilva, Junior José Inácio da. "Comparativo de desempenho de sistemas BCI-SSVEP off-line e em tempo de execução utilizando técnicas de estimação de espectro e análise de correlação canônica". reponame:Repositório Institucional da UFABC, 2017.
Buscar texto completoDissertação (mestrado) - Universidade Federal do ABC. Programa de Pós-Graduação em Engenharia Biomédica, 2017.
Interfaces cérebro-computador (BCIs) definem canais de comunicação capazes de mapear sinais cerebrais em sinais de controle para dispositivos externos, sem utilização dos eferentes biológicos, utilizando comumente estratégias não invasivas para tanto, tal como obtido pela eletroencefalografia de superfície. Dentre os principais paradigmas BCI têm-se os potenciais visualmente evocados em regime estacionário (SSVEP - steady state visually evoked potential), o qual se baseia no sincronismo da atividade elétrica do córtex visual com estímulos visuais externos, permitindo assim a identificação dos eletrodos e frequências estimulatórias mais eficientes para a discriminação dos estímulos escolhidos pelo usuário via modulação da sua atenção. Tal paradigma de sistema BCI tem sido utilizado como uma importante estratégia no âmbito do desenvolvimento de tecnologias assistivas, as quais visam aumentar a qualidade de vida de pacientes com severas limitações motoras e de comunicação. Neste contexto, o presente trabalho apresenta contribuições à implementação de sistemas BCI-SSVEP operando de modo off-line e em tempo de execução (on-line). Para tanto, analisa-se aqui um conjunto de estruturas de processamento de sinais que levam ao melhor desempenho na tarefa de reconhecimento de padrões considerando técnicas clássicas de estimação de espectro e análise de correlação canônica (CCA - Canonical Correlation Analysis), um método comumente referenciado por seus bons resultados. Comparativos envolvendo variantes de pré-processamento baseados na filtragem espacial e na seleção de atributos também são apresentados. Dois conjuntos de dados foram analisados em ambiente off-line e um em tempo de execução. O primeiro conjunto de dados off-line foi analisado a partir da coleta de dados em cooperação científica no contexto do projeto DesTiNe, enquanto o segundo conjunto envolveu coleta de dados off-line e em tempo de execução no próprio laboratório de Métodos Computacionais para a Bioengenharia da UFABC. Como contribuições centrais podem-se mencionar: 1) comparativo de desempenho utilizando variantes de técnicas de filtragem espacial, extração e seleção de características em ambiente off-line; 2) implementação de um setup completo experimental para realização de experimentos BCI-SSVEP com neuro-feedback visual e auditivo; 3) Disponibilização de uma base de dados BCI-SSVEP contendo aquisições de 15 sujeitos com 12 sessões de 6 segundos para cada uma das 4 frequências (10, 11, 12 e 13 Hz), totalizando 48 sessões por sujeito, i.e. um total de 720 sessões de 6 s ou 4.320 s de dados disponibilizados para a comunidade científica; 4) Comparação de 3 métodos de extração de características em âmbito off-line (FFT, Welch e CCA); 5) Comparação de 2 métodos de extração de características em âmbito on-line, FFT e CCA; 6) Análise de desempenho on-line versus off-line.
Brain-computer interfaces (BCIs) define communication channels capable of mapping brain signals in control signals to external devices, without the use of biological efferents, using commonly non-invasive strategies for both, as obtained by surface electroencephalography. Among the main BCI paradigms are the steady state visually evoked potentials (SSVEP), which is based on the synchronization of the electrical activity of the visual cortex with external visual stimuli, thus allowing the identification of the electrodes and frequencies stimulus for discriminating the stimuli chosen by the user by modulating its attention. This BCI system paradigm has been widely used in the development of assistive technologies, which aim to increase the quality of life of patients with severe motor and communication limitations. In this context, this work presents contributions to the implementation of BCI-SSVEP systems operating offline and at run-time. To do so, we analyze here a set of signal processing structures that lead to the best pattern recognition performance considering classical techniques as spectrum estimation and Canonical Correlation Analysis (CCA), a commonly cited method for its good results. Comparisons involving preprocessing variants based on spatial filtering and attribute selection are also presented. Two sets of data were analyzed in an offline environment and one at run time. The first set of off-line data was analyzed from data collection in scientific cooperation in the context of DesTiNe project, while the second set involved off-line and run time data analysis in the Laboratory of Computational Methods for Bioengineering at UFABC. As central contributions may be mentioned: 1) comparative performance using variants of techniques of spatial filtering, feature extraction and feature selection in an offline environment; 2) implementation of a complete experimental setup to perform BCI-SSVEP experiments with visual and auditory neuro-feedback; 3) Availability of a BCI-SSVEP database containing acquisitions of 15 subjects with 12 sessions of 6 seconds for each of the 4 frequencies (10, 11, 12 and 13 Hz), totaling 48 sessions per subject, ie a total of 720 sessions of 6 s or 4,320 s of data made available to the scientific community; 4) Comparison of 3 methods of feature extraction in off-line environment (FFT, Welch and CCA); 5) Comparison of 2 methods of feature extraction in online scope, FFT and CCA; 6) Analysis of performance online versus offline.
McCooey, Conor Gerard y cmccooey@ieee org. "Characterising Evoked Potential Signals using Wavelet Transform Singularity Detection". RMIT University. Electrical and Computer Engineering, 2008. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080829.101311.
Texto completo