Artículos de revistas sobre el tema "Brain aging, MRI, machine learning"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Brain aging, MRI, machine learning".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Shamir, Lior y Joe Long. "Quantitative Machine Learning Analysis of Brain MRI Morphology throughout Aging". Current Aging Science 9, n.º 4 (14 de octubre de 2016): 310–17. http://dx.doi.org/10.2174/1874609809666160413113711.
Texto completoVaranasi, Sravani, Roopan Tuli, Fei Han, Rong Chen y Fow-Sen Choa. "Age Related Functional Connectivity Signature Extraction Using Energy-Based Machine Learning Techniques". Sensors 23, n.º 3 (1 de febrero de 2023): 1603. http://dx.doi.org/10.3390/s23031603.
Texto completoLee, Won Hee. "The Choice of Machine Learning Algorithms Impacts the Association between Brain-Predicted Age Difference and Cognitive Function". Mathematics 11, n.º 5 (2 de marzo de 2023): 1229. http://dx.doi.org/10.3390/math11051229.
Texto completoGómez-Ramírez, Jaime, Miguel A. Fernández-Blázquez y Javier J. González-Rosa. "Prediction of Chronological Age in Healthy Elderly Subjects with Machine Learning from MRI Brain Segmentation and Cortical Parcellation". Brain Sciences 12, n.º 5 (29 de abril de 2022): 579. http://dx.doi.org/10.3390/brainsci12050579.
Texto completoKnight, S., R. Boyle, L. Newman, J. Davis, R. Rizzo, E. Duggan, C. De Looze, R. Whelan, R. A. Kenny y R. Romero-Ortuno. "78 HIGHER NEUROVASCULAR SIGNAL ENTROPY IS ASSOCIATED WITH ACCELERATED BRAIN AGEING". Age and Ageing 50, Supplement_3 (noviembre de 2021): ii9—ii41. http://dx.doi.org/10.1093/ageing/afab219.78.
Texto completoMadole, James, James W. Madole, Simon R. Cox, Colin R. Buchanan, Stuart J. Ritchie, Mark E. Bastin, Ian J. Deary y Elliot M. Tucker-Drob. "PREDICTING TRANSDIAGNOSTIC PSYCHOPATHOLOGY FROM INDICES OF AGING IN THE HUMAN STRUCTURAL CONNECTOME". Innovation in Aging 3, Supplement_1 (noviembre de 2019): S348. http://dx.doi.org/10.1093/geroni/igz038.1261.
Texto completoGuo, Yingying, Xi Yang, Zilong Yuan, Jianfeng Qiu y Weizhao Lu. "A comparison between diffusion tensor imaging and generalized q-sampling imaging in the age prediction of healthy adults via machine learning approaches". Journal of Neural Engineering 19, n.º 1 (1 de febrero de 2022): 016013. http://dx.doi.org/10.1088/1741-2552/ac4bfe.
Texto completoMassetti, Noemi, Mirella Russo, Raffaella Franciotti, Davide Nardini, Giorgio Maria Mandolini, Alberto Granzotto, Manuela Bomba et al. "A Machine Learning-Based Holistic Approach to Predict the Clinical Course of Patients within the Alzheimer’s Disease Spectrum". Journal of Alzheimer's Disease 85, n.º 4 (15 de febrero de 2022): 1639–55. http://dx.doi.org/10.3233/jad-210573.
Texto completoCole, James H., Jonathan Underwood, Matthan W. A. Caan, Davide De Francesco, Rosan A. van Zoest, Robert Leech, Ferdinand W. N. M. Wit et al. "Increased brain-predicted aging in treated HIV disease". Neurology 88, n.º 14 (3 de marzo de 2017): 1349–57. http://dx.doi.org/10.1212/wnl.0000000000003790.
Texto completoBashyam, Vishnu M., Guray Erus, Jimit Doshi, Mohamad Habes, Ilya M. Nasrallah, Monica Truelove-Hill, Dhivya Srinivasan et al. "MRI signatures of brain age and disease over the lifespan based on a deep brain network and 14 468 individuals worldwide". Brain 143, n.º 7 (27 de junio de 2020): 2312–24. http://dx.doi.org/10.1093/brain/awaa160.
Texto completoYounan, Diana, Andrew J. Petkus, Keith F. Widaman, Xinhui Wang, Ramon Casanova, Mark A. Espeland, Margaret Gatz et al. "Particulate matter and episodic memory decline mediated by early neuroanatomic biomarkers of Alzheimer’s disease". Brain 143, n.º 1 (20 de noviembre de 2019): 289–302. http://dx.doi.org/10.1093/brain/awz348.
Texto completoSridhar, Saraswati y Vidya Manian. "EEG and Deep Learning Based Brain Cognitive Function Classification". Computers 9, n.º 4 (21 de diciembre de 2020): 104. http://dx.doi.org/10.3390/computers9040104.
Texto completoCasanova, Ramon, Andrea Anderson, Ryan Barnard, Keenan Walker, Timothy Hughes, Stephen Kritchevsky y Lynne Wagenknecht. "ACCELERATED BRAIN AGING IS ASSOCIATED WITH MORTALITY ACROSS RACE". Innovation in Aging 6, Supplement_1 (1 de noviembre de 2022): 784. http://dx.doi.org/10.1093/geroni/igac059.2834.
Texto completoKnopman, David S., Emily S. Lundt, Terry M. Therneau, Prashanthi Vemuri, Val J. Lowe, Kejal Kantarci, Jeffrey L. Gunter et al. "Entorhinal cortex tau, amyloid-β, cortical thickness and memory performance in non-demented subjects". Brain 142, n.º 4 (12 de febrero de 2019): 1148–60. http://dx.doi.org/10.1093/brain/awz025.
Texto completoDinesh, Deepika, Guan Yi, Jong Soo Lee, Amir Ebrahimzadeh, Bang-Bon Koo, Sherman Bigornia, Tammy Scott, Rafeeque Bhadelia, Katherine Tucker y Natalia Palacios. "Bowel Health, Brain Age, Brain Volume and Cognitive Function in the Boston Puerto Rican Health Study". Current Developments in Nutrition 6, Supplement_1 (junio de 2022): 15. http://dx.doi.org/10.1093/cdn/nzac047.015.
Texto completoCasanova, Ramon, Andrea Anderson, Jamie Justice, Gwen Windham, Rebecca Gottesman, Thomas Mosley, Lynne Wagenknecht y Stephen Kritchevsky. "Can a Data-Driven Measure of Neuroanatomic Dementia Risk be Considered a Measure of Brain Aging?" Innovation in Aging 5, Supplement_1 (1 de diciembre de 2021): 962–63. http://dx.doi.org/10.1093/geroni/igab046.3470.
Texto completoRossini, Paolo Maria, Francesca Miraglia, Francesca Alù, Maria Cotelli, Florinda Ferreri, Riccardo Di Iorio, Francesco Iodice y Fabrizio Vecchio. "Neurophysiological Hallmarks of Neurodegenerative Cognitive Decline: The Study of Brain Connectivity as A Biomarker of Early Dementia". Journal of Personalized Medicine 10, n.º 2 (30 de abril de 2020): 34. http://dx.doi.org/10.3390/jpm10020034.
Texto completoZhang, Fan, Melissa Petersen, Leigh Johnson, James Hall y Sid E. O’Bryant. "Hyperparameter Tuning with High Performance Computing Machine Learning for Imbalanced Alzheimer’s Disease Data". Applied Sciences 12, n.º 13 (1 de julio de 2022): 6670. http://dx.doi.org/10.3390/app12136670.
Texto completoZhao, Xuemei, John Kang, Vladimir Svetnik, Donald Warden, Gordon Wilcock, A. David Smith, Mary J. Savage y Omar F. Laterza. "A Machine Learning Approach to Identify a Circulating MicroRNA Signature for Alzheimer Disease". Journal of Applied Laboratory Medicine 5, n.º 1 (30 de diciembre de 2019): 15–28. http://dx.doi.org/10.1373/jalm.2019.029595.
Texto completoElahifasaee, Farzaneh, Fan Li y Ming Yang. "A Classification Algorithm by Combination of Feature Decomposition and Kernel Discriminant Analysis (KDA) for Automatic MR Brain Image Classification and AD Diagnosis". Computational and Mathematical Methods in Medicine 2019 (30 de diciembre de 2019): 1–14. http://dx.doi.org/10.1155/2019/1437123.
Texto completoMcCorkindale, Andrew N., Hamish D. Mundell, Boris Guennewig y Greg T. Sutherland. "Vascular Dysfunction Is Central to Alzheimer’s Disease Pathogenesis in APOE e4 Carriers". International Journal of Molecular Sciences 23, n.º 13 (26 de junio de 2022): 7106. http://dx.doi.org/10.3390/ijms23137106.
Texto completoLieslehto, Johannes, Erika Jääskeläinen, Jouko Miettunen, Matti Isohanni, Dominic Dwyer y Nikolaos Koutsouleris. "T157. THE COURSE OF SCHIZOPHRENIA-RELATED NEURAL FINGERPRINTS OVER NINE YEARS - A LONGITUDINAL POPULATION-BASED MACHINE LEARNING STUDY". Schizophrenia Bulletin 46, Supplement_1 (abril de 2020): S290—S291. http://dx.doi.org/10.1093/schbul/sbaa029.717.
Texto completoAneesh, Balla, Bijani Raghunandan y Bollam Mithil. "BRAIN TUMOR DETECTION USING MACHINE LEARNING". International Journal of Computer Science and Mobile Computing 11, n.º 1 (30 de enero de 2022): 146–52. http://dx.doi.org/10.47760/ijcsmc.2022.v11i01.018.
Texto completoSiddiqi, Muhammad Hameed, Mohammad Azad y Yousef Alhwaiti. "An Enhanced Machine Learning Approach for Brain MRI Classification". Diagnostics 12, n.º 11 (14 de noviembre de 2022): 2791. http://dx.doi.org/10.3390/diagnostics12112791.
Texto completoMalarvizhi, A. B., A. Mofika, M. Monapreetha y A. M. Arunnagiri. "Brain tumour classification using machine learning algorithm". Journal of Physics: Conference Series 2318, n.º 1 (1 de agosto de 2022): 012042. http://dx.doi.org/10.1088/1742-6596/2318/1/012042.
Texto completoSowrirajan, Saran Raj y Surendiran Balasubramanian. "Brain Tumor Classification Using Machine Learning and Deep Learning Algorithms". International Journal of Electrical and Electronics Research 10, n.º 4 (30 de diciembre de 2022): 999–1004. http://dx.doi.org/10.37391/ijeer.100441.
Texto completoHassan, Mosaad W., Arabi Keshk, Amira Abd El-atey y Elham Alfeky. "BRAIN STROKE DETECTION USING TENSOR FACTORIZATION AND MACHINE LEARNING MODELS". International Journal of Engineering Technologies and Management Research 8, n.º 8 (16 de agosto de 2021): 1–12. http://dx.doi.org/10.29121/ijetmr.v8.i8.2021.1006.
Texto completoWang, Nicholas C., Douglas C. Noll, Ashok Srinivasan, Johann Gagnon-Bartsch, Michelle M. Kim y Arvind Rao. "Simulated MRI Artifacts: Testing Machine Learning Failure Modes". BME Frontiers 2022 (1 de noviembre de 2022): 1–16. http://dx.doi.org/10.34133/2022/9807590.
Texto completoKareem, Shahab Wahhab, Bikhtiyar Friyad Abdulrahman, Roojwan Sc Hawezi, Farah Sami Khoshaba, Shavan Askar, Karwan Muhammed Muheden y Ibrahim Shamal Abdulkhaleq. "Comparative evaluation for detection of brain tumor using machine learning algorithms". IAES International Journal of Artificial Intelligence (IJ-AI) 12, n.º 1 (1 de marzo de 2023): 469. http://dx.doi.org/10.11591/ijai.v12.i1.pp469-477.
Texto completoAlanazi, Muhannad Faleh, Muhammad Umair Ali, Shaik Javeed Hussain, Amad Zafar, Mohammed Mohatram, Muhammad Irfan, Raed AlRuwaili, Mubarak Alruwaili, Naif H. Ali y Anas Mohammad Albarrak. "Brain Tumor/Mass Classification Framework Using Magnetic-Resonance-Imaging-Based Isolated and Developed Transfer Deep-Learning Model". Sensors 22, n.º 1 (4 de enero de 2022): 372. http://dx.doi.org/10.3390/s22010372.
Texto completoAlmajmaie, Layth Kamil Adday, Ahmed Raad Raheem, Wisam Ali Mahmood y Saad Albawi. "MRI image segmentation using machine learning networks and level set approaches". International Journal of Electrical and Computer Engineering (IJECE) 12, n.º 1 (1 de febrero de 2022): 793. http://dx.doi.org/10.11591/ijece.v12i1.pp793-801.
Texto completoRezaei, Mansour, Ehsan Zereshki, Soodeh Shahsavari, Mohammad Gharib Salehi y Hamid Sharini. "Prediction of Alzheimer’s Disease Using Machine Learning Classifiers". International Electronic Journal of Medicine 9, n.º 3 (30 de septiembre de 2020): 116–20. http://dx.doi.org/10.34172/iejm.2020.21.
Texto completoKang, Jaeyong, Zahid Ullah y Jeonghwan Gwak. "MRI-Based Brain Tumor Classification Using Ensemble of Deep Features and Machine Learning Classifiers". Sensors 21, n.º 6 (22 de marzo de 2021): 2222. http://dx.doi.org/10.3390/s21062222.
Texto completoStadlbauer, Andreas, Franz Marhold, Stefan Oberndorfer, Gertraud Heinz, Michael Buchfelder, Thomas M. Kinfe y Anke Meyer-Bäse. "Radiophysiomics: Brain Tumors Classification by Machine Learning and Physiological MRI Data". Cancers 14, n.º 10 (10 de mayo de 2022): 2363. http://dx.doi.org/10.3390/cancers14102363.
Texto completoFan, Zhao, Fanyu Xu, Xuedan Qi, Cai Li y Lili Yao. "Classification of Alzheimer’s disease based on brain MRI and machine learning". Neural Computing and Applications 32, n.º 7 (13 de septiembre de 2019): 1927–36. http://dx.doi.org/10.1007/s00521-019-04495-0.
Texto completoZacharaki, Evangelia I., Vasileios G. Kanas y Christos Davatzikos. "Investigating machine learning techniques for MRI-based classification of brain neoplasms". International Journal of Computer Assisted Radiology and Surgery 6, n.º 6 (23 de abril de 2011): 821–28. http://dx.doi.org/10.1007/s11548-011-0559-3.
Texto completoMhaske, Supriya A. y M. L. Dhore. "Brain Tumor Classification Using Machine Learning Mixed Approach". International Journal for Research in Applied Science and Engineering Technology 10, n.º 8 (31 de agosto de 2022): 1225–30. http://dx.doi.org/10.22214/ijraset.2022.45533.
Texto completoBajaj, Aaishwarya Sanjay y Usha Chouhan. "A Review of Various Machine Learning Techniques for Brain Tumor Detection from MRI Images". Current Medical Imaging Formerly Current Medical Imaging Reviews 16, n.º 8 (19 de octubre de 2020): 937–45. http://dx.doi.org/10.2174/1573405615666190903144419.
Texto completoDong, Ningxin, Changyong Fu, Renren Li, Wei Zhang, Meng Liu, Weixin Xiao, Hugh M. Taylor et al. "Machine Learning Decomposition of the Anatomy of Neuropsychological Deficit in Alzheimer’s Disease and Mild Cognitive Impairment". Frontiers in Aging Neuroscience 14 (3 de mayo de 2022). http://dx.doi.org/10.3389/fnagi.2022.854733.
Texto completoHwang, Gyujoon, Ahmed Abdulkadir, Guray Erus, Mohamad Habes, Raymond Pomponio, Haochang Shou, Jimit Doshi et al. "Disentangling Alzheimer’s disease neurodegeneration from typical brain aging using MRI and machine learning". Alzheimer's & Dementia 17, S4 (diciembre de 2021). http://dx.doi.org/10.1002/alz.051532.
Texto completoShen, Ying, Qian Lu, Tianjiao Zhang, Hailang Yan, Negar Mansouri, Karol Osipowicz, Onur Tanglay et al. "Use of machine learning to identify functional connectivity changes in a clinical cohort of patients at risk for dementia". Frontiers in Aging Neuroscience 14 (1 de septiembre de 2022). http://dx.doi.org/10.3389/fnagi.2022.962319.
Texto completo"451 - Estimating “Brain Age Gaps” in patients with brain injury: Applying machine learning to advanced neuroimaging techniques". International Psychogeriatrics 32, S1 (octubre de 2020): 171. http://dx.doi.org/10.1017/s1041610220003038.
Texto completoBillot, Benjamin, Colin Magdamo, You Cheng, Steven E. Arnold, Sudeshna Das y Juan Eugenio Iglesias. "Robust machine learning segmentation for large-scale analysis of heterogeneous clinical brain MRI datasets". Proceedings of the National Academy of Sciences 120, n.º 9 (21 de febrero de 2023). http://dx.doi.org/10.1073/pnas.2216399120.
Texto completoChristman, Seth, Camilo Bermudez, Lingyan Hao, Bennett A. Landman, Brian Boyd, Kimberly Albert, Neil Woodward et al. "Accelerated brain aging predicts impaired cognitive performance and greater disability in geriatric but not midlife adult depression". Translational Psychiatry 10, n.º 1 (18 de septiembre de 2020). http://dx.doi.org/10.1038/s41398-020-01004-z.
Texto completoBallester, Pedro L., Laura Tomaz da Silva, Matheus Marcon, Nathalia Bianchini Esper, Benicio N. Frey, Augusto Buchweitz y Felipe Meneguzzi. "Predicting Brain Age at Slice Level: Convolutional Neural Networks and Consequences for Interpretability". Frontiers in Psychiatry 12 (25 de febrero de 2021). http://dx.doi.org/10.3389/fpsyt.2021.598518.
Texto completoYa, Yang, Lirong Ji, Yujing Jia, Nan Zou, Zhen Jiang, Hongkun Yin, Chengjie Mao, Weifeng Luo, Erlei Wang y Guohua Fan. "Machine Learning Models for Diagnosis of Parkinson’s Disease Using Multiple Structural Magnetic Resonance Imaging Features". Frontiers in Aging Neuroscience 14 (13 de abril de 2022). http://dx.doi.org/10.3389/fnagi.2022.808520.
Texto completoStatsenko, Yauhen, Sarah Meribout, Tetiana Habuza, Taleb M. Almansoori, Klaus Neidl-Van Gorkom, Juri G. Gelovani y Milos Ljubisavljevic. "Patterns of structure-function association in normal aging and in Alzheimer's disease: Screening for mild cognitive impairment and dementia with ML regression and classification models". Frontiers in Aging Neuroscience 14 (23 de febrero de 2023). http://dx.doi.org/10.3389/fnagi.2022.943566.
Texto completoJawinski, Philippe, Sebastian Markett, Johanna Drewelies, Sandra Düzel, Ilja Demuth, Elisabeth Steinhagen-Thiessen, Gert G. Wagner et al. "Linking Brain Age Gap to Mental and Physical Health in the Berlin Aging Study II". Frontiers in Aging Neuroscience 14 (22 de julio de 2022). http://dx.doi.org/10.3389/fnagi.2022.791222.
Texto completoSyaifullah, Ali Haidar, Akihiko Shiino, Hitoshi Kitahara, Ryuta Ito, Manabu Ishida y Kenji Tanigaki. "Machine Learning for Diagnosis of AD and Prediction of MCI Progression From Brain MRI Using Brain Anatomical Analysis Using Diffeomorphic Deformation". Frontiers in Neurology 11 (5 de febrero de 2021). http://dx.doi.org/10.3389/fneur.2020.576029.
Texto completoVarzandian, Ali, Miguel Angel Sanchez Razo, Michael Richard Sanders, Akhila Atmakuru y Giuseppe Di Fatta. "Classification-Biased Apparent Brain Age for the Prediction of Alzheimer's Disease". Frontiers in Neuroscience 15 (28 de mayo de 2021). http://dx.doi.org/10.3389/fnins.2021.673120.
Texto completo