Literatura académica sobre el tema "Brain aging, MRI, machine learning"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Brain aging, MRI, machine learning".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Brain aging, MRI, machine learning"
Shamir, Lior y Joe Long. "Quantitative Machine Learning Analysis of Brain MRI Morphology throughout Aging". Current Aging Science 9, n.º 4 (14 de octubre de 2016): 310–17. http://dx.doi.org/10.2174/1874609809666160413113711.
Texto completoVaranasi, Sravani, Roopan Tuli, Fei Han, Rong Chen y Fow-Sen Choa. "Age Related Functional Connectivity Signature Extraction Using Energy-Based Machine Learning Techniques". Sensors 23, n.º 3 (1 de febrero de 2023): 1603. http://dx.doi.org/10.3390/s23031603.
Texto completoLee, Won Hee. "The Choice of Machine Learning Algorithms Impacts the Association between Brain-Predicted Age Difference and Cognitive Function". Mathematics 11, n.º 5 (2 de marzo de 2023): 1229. http://dx.doi.org/10.3390/math11051229.
Texto completoGómez-Ramírez, Jaime, Miguel A. Fernández-Blázquez y Javier J. González-Rosa. "Prediction of Chronological Age in Healthy Elderly Subjects with Machine Learning from MRI Brain Segmentation and Cortical Parcellation". Brain Sciences 12, n.º 5 (29 de abril de 2022): 579. http://dx.doi.org/10.3390/brainsci12050579.
Texto completoKnight, S., R. Boyle, L. Newman, J. Davis, R. Rizzo, E. Duggan, C. De Looze, R. Whelan, R. A. Kenny y R. Romero-Ortuno. "78 HIGHER NEUROVASCULAR SIGNAL ENTROPY IS ASSOCIATED WITH ACCELERATED BRAIN AGEING". Age and Ageing 50, Supplement_3 (noviembre de 2021): ii9—ii41. http://dx.doi.org/10.1093/ageing/afab219.78.
Texto completoMadole, James, James W. Madole, Simon R. Cox, Colin R. Buchanan, Stuart J. Ritchie, Mark E. Bastin, Ian J. Deary y Elliot M. Tucker-Drob. "PREDICTING TRANSDIAGNOSTIC PSYCHOPATHOLOGY FROM INDICES OF AGING IN THE HUMAN STRUCTURAL CONNECTOME". Innovation in Aging 3, Supplement_1 (noviembre de 2019): S348. http://dx.doi.org/10.1093/geroni/igz038.1261.
Texto completoGuo, Yingying, Xi Yang, Zilong Yuan, Jianfeng Qiu y Weizhao Lu. "A comparison between diffusion tensor imaging and generalized q-sampling imaging in the age prediction of healthy adults via machine learning approaches". Journal of Neural Engineering 19, n.º 1 (1 de febrero de 2022): 016013. http://dx.doi.org/10.1088/1741-2552/ac4bfe.
Texto completoMassetti, Noemi, Mirella Russo, Raffaella Franciotti, Davide Nardini, Giorgio Maria Mandolini, Alberto Granzotto, Manuela Bomba et al. "A Machine Learning-Based Holistic Approach to Predict the Clinical Course of Patients within the Alzheimer’s Disease Spectrum". Journal of Alzheimer's Disease 85, n.º 4 (15 de febrero de 2022): 1639–55. http://dx.doi.org/10.3233/jad-210573.
Texto completoCole, James H., Jonathan Underwood, Matthan W. A. Caan, Davide De Francesco, Rosan A. van Zoest, Robert Leech, Ferdinand W. N. M. Wit et al. "Increased brain-predicted aging in treated HIV disease". Neurology 88, n.º 14 (3 de marzo de 2017): 1349–57. http://dx.doi.org/10.1212/wnl.0000000000003790.
Texto completoBashyam, Vishnu M., Guray Erus, Jimit Doshi, Mohamad Habes, Ilya M. Nasrallah, Monica Truelove-Hill, Dhivya Srinivasan et al. "MRI signatures of brain age and disease over the lifespan based on a deep brain network and 14 468 individuals worldwide". Brain 143, n.º 7 (27 de junio de 2020): 2312–24. http://dx.doi.org/10.1093/brain/awaa160.
Texto completoTesis sobre el tema "Brain aging, MRI, machine learning"
Mahbod, Amirreza. "Structural Brain MRI Segmentation Using Machine Learning Technique". Thesis, KTH, Skolan för teknik och hälsa (STH), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-189985.
Texto completoZarogianni, Eleni. "Machine learning and brain imaging in psychosis". Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/22814.
Texto completoAbdulkadir, Ahmed [Verfasser] y Thomas [Akademischer Betreuer] Brox. "Brain MRI analysis and machine learning for diagnosis of neurodegeneration". Freiburg : Universität, 2018. http://d-nb.info/117696805X/34.
Texto completoKim, Eun Young. "Machine-learning based automated segmentation tool development for large-scale multicenter MRI data analysis". Diss., University of Iowa, 2013. https://ir.uiowa.edu/etd/4998.
Texto completoO'Leary, Brian. "A Vertex-Based Approach to the Statistical and Machine Learning Analyses of Brain Structure". University of Toledo / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1576254162111087.
Texto completoGinsburger, Kévin. "Modeling and simulation of the diffusion MRI signal from human brain white matter to decode its microstructure and produce an anatomic atlas at high fields (3T)". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS158/document.
Texto completoDiffusion Magnetic Resonance Imaging of water in the brain has proven very useful to establish a cartography of brain connections. It is the only in vivo modality to study anatomical connectivity. A few years ago, it has been shown that diffusion MRI is also a unique tool to perform virtual biopsy of cerebral tissues. However, most of current analytical models (AxCaliber, ActiveAx, CHARMED) employed for the estimation of white matter microstructure rely upon a basic modeling of white matter, with axons represented by simple cylinders and extra-axonal diffusion assumed to be Gaussian. First, a more physically plausible analytical model of the human brain white matter accounting for the time-dependence of the diffusion process in the extra-axonal space was developed for Oscillating Gradient Spin Echo (OGSE) sequence signals. A decoding tool enabling to solve the inverse problem of estimating the parameters of the white matter microstructure from the OGSE-weighted diffusion MRI signal was designed using a robust optimization scheme for parameter estimation. Second, a Big Data approach was designed to further improve the brain microstructure decoding. All the simulation tools necessary to construct computational models of brain tissues were developed in the frame of this thesis. An algorithm creating realistic white matter tissue numerical phantoms based on a spherical meshing of cell shapes was designed, enabling to generate a massive amount of virtual voxels in a computationally efficient way thanks to a GPU-based implementation. An ultra-fast simulation tool of the water molecules diffusion process in those virtual voxels was designed, enabling to generate synthetic diffusion MRI signal for each virtual voxel. A dictionary of virtual voxels containing a huge set of geometrical configurations present in white matter was built. This dictionary contained virtual voxels with varying degrees of axonal beading, a swelling of the axonal membrane which occurs after strokes and other pathologies. The set of synthetic signals and associated geometrical configurations of the corresponding voxels was used as a training data set for a machine learning algorithm designed to decode white matter microstructure from the diffusion MRI signal and estimate the degree of axonal beading. This decoder showed encouraging regression results on unknown simulated data, showing the potential of the presented approach to characterize the microstructure of healthy and injured brain tissues in vivo. The microstructure decoding tools developed during this thesis will in particular be used to characterize white matter tissue microstructural parameters (axonal density, mean axonal diameter, glial density, mean glial cells diameter, microvascular density ) in short and long bundles. The simulation tools developed in the frame of this thesis will enable the construction of a probabilistic atlas of the white matter bundles microstructural parameters, using a mean propagator based diffeomorphic registration tool also designed in the frame of this thesis to register each individual
SALVATORE, CHRISTIAN. "Development and validation of a Decision Support System for the automatic diagnosis of medical images from brain MRI studies". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2015. http://hdl.handle.net/10281/94834.
Texto completoMagrì, Salvatore. "Characterization of cerebral cortex folding in humans through MRI: quality control and dementia prediction". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21245/.
Texto completoOlešová, Kristína. "Klasifikace stupně gliomů v MR datech mozku". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-413113.
Texto completoYAMIN, MUHAMMAD ABUBAKAR. "Investigating Brain Functional Networks in a Riemannian Framework". Doctoral thesis, Università degli studi di Genova, 2021. http://hdl.handle.net/11567/1040663.
Texto completoCapítulos de libros sobre el tema "Brain aging, MRI, machine learning"
Kodner, Boris, Shiri Gordon, Jacob Goldberger y Tammy Riklin Raviv. "Atlas of Classifiers for Brain MRI Segmentation". En Machine Learning in Medical Imaging, 36–44. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67389-9_5.
Texto completoYu, Renping, Minghui Deng, Pew-Thian Yap, Zhihui Wei, Li Wang y Dinggang Shen. "Learning-Based 3T Brain MRI Segmentation with Guidance from 7T MRI Labeling". En Machine Learning in Medical Imaging, 213–20. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47157-0_26.
Texto completoChen, Xu, Chunfeng Lian, Li Wang, Pew-Thian Yap, James J. Xia y Dinggang Shen. "Segmenting Bones from Brain MRI via Generative Adversarial Learning". En Machine Learning in Dentistry, 27–40. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71881-7_3.
Texto completoDong, Pei, Xiaohuan Cao, Jun Zhang, Minjeong Kim, Guorong Wu y Dinggang Shen. "Efficient Groupwise Registration for Brain MRI by Fast Initialization". En Machine Learning in Medical Imaging, 150–58. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67389-9_18.
Texto completoValverde, Juan Miguel, Artem Shatillo, Riccardo De Feo, Olli Gröhn, Alejandra Sierra y Jussi Tohka. "Automatic Rodent Brain MRI Lesion Segmentation with Fully Convolutional Networks". En Machine Learning in Medical Imaging, 195–202. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32692-0_23.
Texto completoBao, Dongxing, Xiaoming Li y Jin Li. "Lorentzian Norm Based Super-Resolution Reconstruction of Brain MRI Image". En Machine Learning and Intelligent Communications, 326–32. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73447-7_36.
Texto completoTahir, Muhammad. "Brain MRI Classification Using Gradient Boosting". En Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology, 294–301. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-66843-3_29.
Texto completoRoy, Snehashis, Aaron Carass, Jerry L. Prince y Dzung L. Pham. "Subject Specific Sparse Dictionary Learning for Atlas Based Brain MRI Segmentation". En Machine Learning in Medical Imaging, 248–55. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10581-9_31.
Texto completoHabib, Md Rawshan, Ahmed Yousuf Suhan, Abhishek Vadher, Md Ashiqur Rahman Swapno, Md Rashedul Arefin, Saiful Islam, Khan Anik Rahman y Md Shahnewaz Tanvir. "Clustering of MRI in Brain Images Using Fuzzy C Means Algorithm". En Machine Learning and Autonomous Systems, 437–48. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7996-4_31.
Texto completoGuan, Hao, Erkun Yang, Li Wang, Pew-Thian Yap, Mingxia Liu y Dinggang Shen. "Linking Adolescent Brain MRI to Obesity via Deep Multi-cue Regression Network". En Machine Learning in Medical Imaging, 111–19. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59861-7_12.
Texto completoActas de conferencias sobre el tema "Brain aging, MRI, machine learning"
Chaphekarande, Prachi y Deepa Deshpande. "Machine Learning Based Brain MRI Estimation Method". En 2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT). IEEE, 2019. http://dx.doi.org/10.1109/icicict46008.2019.8993363.
Texto completoDasanayaka, Sasmitha, Sanju Silva, Vimuth Shantha, Dulani Meedeniya y Thanuja Ambegoda. "Interpretable Machine Learning for Brain Tumor Analysis Using MRI". En 2022 2nd International Conference on Advanced Research in Computing (ICARC). IEEE, 2022. http://dx.doi.org/10.1109/icarc54489.2022.9754131.
Texto completoQu, Yili, Chufu Deng, Wanqi Su, Ying Wang, Yutong Lu y Zhiguang Chen. "Multimodal Brain MRI Translation Focused on Lesions". En ICMLC 2020: 2020 12th International Conference on Machine Learning and Computing. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3383972.3384024.
Texto completoYong Yang, Ni-Ni Rao y Shu-Ying Huang. "A novel fuzzy approach for segmentation of brain MRI". En 2008 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2008. http://dx.doi.org/10.1109/icmlc.2008.4620871.
Texto completoB, Preetika, M. Latha, M. Senthilmurugan y R. Chinnaiyan. "MRI Image based Brain Tumour Segmentation using Machine Learning Classifiers". En 2021 International Conference on Computer Communication and Informatics (ICCCI). IEEE, 2021. http://dx.doi.org/10.1109/iccci50826.2021.9402508.
Texto completoAfshar, Leila Keshavarz y Hedieh Sajedi. "Age Prediction based on Brain MRI Images using Extreme Learning Machine". En 2019 7th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS). IEEE, 2019. http://dx.doi.org/10.1109/cfis.2019.8692156.
Texto completoParveen, Afiya y Prabha Selvaraj. "Machine Learning Techniques for analysis of AD Detection using brain MRI". En 2022 International Conference on Computer Communication and Informatics (ICCCI). IEEE, 2022. http://dx.doi.org/10.1109/iccci54379.2022.9740739.
Texto completoJayasuriya, Surani Anuradha y Alan Wee-Chung Liew. "Fractal dimension as a symmetry measure in 3D brain MRI analysis". En 2012 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2012. http://dx.doi.org/10.1109/icmlc.2012.6359511.
Texto completoDonnelly Kehoe, P., G. Pascariello, M. Quaglino, J. Nagel y J. C. Gómez. "The changing brain in healthy aging: a multi-MRI machine and multicenter surface-based morphometry study". En 12th International Symposium on Medical Information Processing and Analysis, editado por Eduardo Romero, Natasha Lepore, Jorge Brieva y Ignacio Larrabide. SPIE, 2017. http://dx.doi.org/10.1117/12.2256894.
Texto completoAsodekar, Bhagyashri H., Sonal A. Gore y A. D. Thakare. "Brain Tumor analysis Based on Shape Features of MRI using Machine Learning". En 2019 5th International Conference On Computing, Communication, Control And Automation (ICCUBEA). IEEE, 2019. http://dx.doi.org/10.1109/iccubea47591.2019.9129512.
Texto completo