Índice
Literatura académica sobre el tema "Bosonic analytic continuation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Bosonic analytic continuation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Bosonic analytic continuation"
Ong, Perkins Jon y Danilo M. Yanga. "Damping of spin waves in high-Tc superconductors in the spin polaron formulation". International Journal of Modern Physics B 32, n.º 15 (18 de junio de 2018): 1850190. http://dx.doi.org/10.1142/s0217979218501904.
Texto completoBRESSLOFF, P. C., J. G. TAYLOR y A. RESTUCCIA. "A FUNCTIONAL LIGHT-CONE GAUGE CONSTRUCTION OF A BOSONIC STRING COMPACTIFIED ON A TORUS". International Journal of Modern Physics A 03, n.º 02 (febrero de 1988): 451–86. http://dx.doi.org/10.1142/s0217751x88000175.
Texto completoNg, K. K. "Bilayered Spin-S Heisenberg Model in Fractional Dimensions". International Journal of Modern Physics B 12, n.º 18 (20 de julio de 1998): 1809–12. http://dx.doi.org/10.1142/s0217979298001034.
Texto completoMANDAL, GAUTAM, ANIRVAN M. SENGUPTA y SPENTA R. WADIA. "INTERACTIONS AND SCATTERING IN d = 1 STRING THEORY". Modern Physics Letters A 06, n.º 16 (30 de mayo de 1991): 1465–77. http://dx.doi.org/10.1142/s0217732391001585.
Texto completoOstrovska, Sofiya. "On the properties of the limit q-Bernstein operator". Studia Scientiarum Mathematicarum Hungarica 48, n.º 2 (1 de junio de 2011): 160–79. http://dx.doi.org/10.1556/sscmath.48.2011.2.1164.
Texto completoFeng, Xin, Xu Wang y Yue Zhang. "Research on public emotional polarization and public opinion evolution of OTC and learning during the COVID-19 epidemic: taking the topic of OTC on Zhihu as an example". Library Hi Tech 40, n.º 2 (16 de diciembre de 2021): 286–303. http://dx.doi.org/10.1108/lht-09-2021-0323.
Texto completoNogaki, Kosuke y Hiroshi Shinaoka. "Bosonic Nevanlinna Analytic Continuation". Journal of the Physical Society of Japan 92, n.º 3 (15 de marzo de 2023). http://dx.doi.org/10.7566/jpsj.92.035001.
Texto completoNeuhaus, James, Nathan S. Nichols, Debshikha Banerjee, Benjamin Cohen-Stead, Thomas Maier, Adrian Del Maestro y Steven Johnston. "SmoQyDEAC.jl: A differential evolution package for the analytic continuation of imaginary time correlation functions". SciPost Physics Codebases, 12 de noviembre de 2024. http://dx.doi.org/10.21468/scipostphyscodeb.39.
Texto completoNeuhaus, James, Nathan S. Nichols, Debshikha Banerjee, Benjamin Cohen-Stead, Thomas Maier, Adrian Del Maestro y Steven Johnston. "Codebase release r1.1 for SmoQyDEAC.jl". SciPost Physics Codebases, 12 de noviembre de 2024. http://dx.doi.org/10.21468/scipostphyscodeb.39-r1.1.
Texto completoPalermo, A., M. Buzzegoli y F. Becattini. "Exact equilibrium distributions in statistical quantum field theory with rotation and acceleration: Dirac field". Journal of High Energy Physics 2021, n.º 10 (octubre de 2021). http://dx.doi.org/10.1007/jhep10(2021)077.
Texto completoTesis sobre el tema "Bosonic analytic continuation"
Rotella, Francesco. "Theoretical methods for the role of correlations on high-Tc superconductivity". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP181.
Texto completoThis thesis includes two projects. In the first one, we develop and bench-mark an A.I. model to solve bosonic analytic continuation problems, that is generating the right optical conductivity starting from the current-current correlation function. Recent work has demonstrated that Neural Network can outperform Maximum Entropy methods for the analytical continuation of noisy Matsubara Green’s function in many-body physics, both in accuracy and computational cost. Here we generalize this approach to the conductivity response functions. A combination of Beta distributions is proposed as way to generate training sets that avoid limitations associated with monotonous flat scenery, as they offer a broad set of qualitatively different training spectra. We find that Neural Networks are particularly efficient at predicting DC conductivity, a notoriously difficult quantity for Maximum Entropy methods. We clarify the procedure to use the model in a thermally agnostic fashion, meaning that a Neural Network trained at a specific temperature could be used at different ones through a rescaling routine. Finally, we propose a general definition of confidence to be associated with the prediction of the optical conductivity profile, a much needed missing tile in the A.I. analytic continuation landscape, and provide some insight on its applicability. The second project focuses on cuprate high temperature superconductors. Recent experimental work has shown a strong anticorrelation between superconducting order parameter and the so called charge transfer gap. This involves both oxygen and copper orbitals and originates from the strong electronic correlation typical of these materials. In particular, a direct measure of these observables and their anti-correlation has been obtained by scanning tunneling microscopy experiments. Taking advantage from the natural modulation of the apical oxygen position on the surface of bi-layered BSCCO, which also modulate these observable in space, the anti-correlation could be validated at different sites of the same material. Using an advanced Dynamical Mean Field Theory method applied to the inhomogeneous Emery-Hubbard model, which takes into account both the copper and the oxygen orbitals of the cuprate planes, we are able to simulate the experimental situation. By using a pseudoinversion extrapolation method, we can show that the anti-correlation is present and strong in this model, though the strong spatial variation reported in experiments does not occur. This calls for a critical re-evaluation of the interpretation of the experimental results within our modeling. We finally discuss these findings in relation with the critical transition temperature, the superconducting order parameter and charge transfer gap of various known cuprate compounds