Literatura académica sobre el tema "Borell-Brascamp-Lieb inequalities"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Borell-Brascamp-Lieb inequalities".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Borell-Brascamp-Lieb inequalities"

1

Iglesias, David y Jesús Yepes Nicolás. "On discrete Borell–Brascamp–Lieb inequalities". Revista Matemática Iberoamericana 36, n.º 3 (26 de septiembre de 2019): 711–22. http://dx.doi.org/10.4171/rmi/1145.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Balogh, Zoltán M. y Alexandru Kristály. "Equality in Borell–Brascamp–Lieb inequalities on curved spaces". Advances in Mathematics 339 (diciembre de 2018): 453–94. http://dx.doi.org/10.1016/j.aim.2018.09.041.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Bacher, Kathrin. "On Borell-Brascamp-Lieb Inequalities on Metric Measure Spaces". Potential Analysis 33, n.º 1 (30 de septiembre de 2009): 1–15. http://dx.doi.org/10.1007/s11118-009-9157-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Bolley, François, Dario Cordero-Erausquin, Yasuhiro Fujita, Ivan Gentil y Arnaud Guillin. "New Sharp Gagliardo–Nirenberg–Sobolev Inequalities and an Improved Borell–Brascamp–Lieb Inequality". International Mathematics Research Notices 2020, n.º 10 (24 de mayo de 2018): 3042–83. http://dx.doi.org/10.1093/imrn/rny111.

Texto completo
Resumen
Abstract We propose a new Borell–Brascamp–Lieb inequality that leads to novel sharp Euclidean inequalities such as Gagliardo–Nirenberg–Sobolev inequalities in $ {\mathbb{R}}^n$ and in the half-space $ {\mathbb{R}}^n_+$. This gives a new bridge between the geometric point of view of the Brunn–Minkowski inequality and the functional point of view of the Sobolev-type inequalities. In this way we unify, simplify, and generalize results by S. Bobkov–M. Ledoux, M. del Pino–J. Dolbeault, and B. Nazaret.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Borell-Brascamp-Lieb inequalities"

1

Rossi, Andrea. "Borell-Brascamp-Lieb inequalities: rigidity and stability". Doctoral thesis, 2018. http://hdl.handle.net/2158/1125503.

Texto completo
Resumen
La tesi è dedicata allo studio delle cosiddette disuguaglianze di Borell-Brascamp-Lieb, note in letteratura come forme funzionali della disuguaglianza di Brunn-Minkowski. L'intento della tesi è duplice: da una parte si prefigge come manuale dettagliato delle disuguaglianze di Borell-Brascamp-Lieb, affrontando varie estensioni e proprietà più o meno note in letteratura; in secondo luogo si concentra sulla questione della stabilità di tali disuguaglianze, citando i risultati più significativi ed esibendo i contributi originali ottenuti, tratti dagli articoli: 1) A. Rossi, P. Salani, Stability for Borell-Brascamp-Lieb inequalities, Geometric Aspects of Functional Analysis - Israel Seminar (GAFA) 2014-2016 (B. Klartag and E. Milman Eds), Springer Lecture Notes in Mathematics 2169 (2017); 2) A. Rossi, P. Salani, Stability for a strengthened one-dimensional Borell-Brascamp-Lieb inequality, Applicable Analysis (2018). All the Borell-Brascamp-Lieb inequalities can be read as the functional counterparts of the celebrated Brunn-Minkowski inequality, and they have been widely studied in the last decades. The thesis focuses on two main targets. The first is to produce a complete and detailed overview on the results (old and new) on the Borell-Brascamp-Lieb inequalities, the second is to investigate some open questions on the quantitative version of such inequalities. The thesis is divided in 7 chapters. The first five contain the overview on the state of the art, classical and alternative proofs of both Borell-Brascamp-Lieb and Brunn-Minkowski inequalities, theequality cases and some stability results. Chapter 6 and Chapter 7 are devoted to describe the original contributions of the author in the field. Precisely in Chapter 6 a strengthened version of the one dimensional Borell-Brascamp-Liebinequality is proved, while in Chapter 7 the goal is to prove a general quantitative versions of the Borell-Brascamp-Lieb inequalities without concavity assumptions on the involved function. The original results are contained in the following two papers: • A. Rossi, P. Salani, Stability for Borell-Brascamp-Lieb inequalities, Geometric Aspects of Functional Analysis - Israel Seminar (GAFA) 2014-2016 (B. Klartag - E. Milman Eds), Springer Lecture Notes in Mathematics 2169 (2017); • A. Rossi, P. Salani, Stability for a strengthened one-dimensional Borell-Brascamp- Lieb inequality, Applicable Analysis (2018).
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Borell-Brascamp-Lieb inequalities"

1

Rossi, Andrea y Paolo Salani. "Stability for Borell-Brascamp-Lieb Inequalities". En Lecture Notes in Mathematics, 339–63. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-45282-1_22.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía