Siga este enlace para ver otros tipos de publicaciones sobre el tema: Bodily symmetrie.

Artículos de revistas sobre el tema "Bodily symmetrie"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Bodily symmetrie".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

MAINZER, KLAUS. "Symmetry and complexity in dynamical systems". European Review 13, S2 (22 de agosto de 2005): 29–48. http://dx.doi.org/10.1017/s1062798705000645.

Texto completo
Resumen
Historically, static symmetric bodies and ornaments are geometric idealizations in the Platonic tradition. Actually, symmetries are locally and globally broken by phase transitions of instability in dynamical systems generating a variety of new order and partial symmetries with increasing complexity. The states of complex dynamical systems can refer to, for example, atomic clusters, crystals, biomolecules, organisms and brains, social and economic systems. The paper discusses dynamical balance as dynamical symmetry in dynamical systems, which can be simulated by computational systems. Its emergence is an interdisciplinary challenge of nonlinear systems science. The philosophy of science analyses the common methodological framework of symmetry and complexity.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Suk, Tomáš y Jan Flusser. "Recognition of Symmetric 3D Bodies". Symmetry 6, n.º 3 (1 de septiembre de 2014): 722–57. http://dx.doi.org/10.3390/sym6030722.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Lassak, Marek. "Approximation of convex bodies by axially symmetric bodies". Proceedings of the American Mathematical Society 130, n.º 10 (14 de marzo de 2002): 3075–84. http://dx.doi.org/10.1090/s0002-9939-02-06404-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Wu, Liangxing y Kevin Burgess. "A new synthesis of symmetric boraindacene (BODIPY) dyes". Chemical Communications, n.º 40 (2008): 4933. http://dx.doi.org/10.1039/b810503k.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Lassak, Marek. "Approximation of Plane Convex Bodies by Centrally Symmetric Bodies". Journal of the London Mathematical Society s2-40, n.º 2 (octubre de 1989): 369–77. http://dx.doi.org/10.1112/jlms/s2-40.2.369.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Myroshnychenko, Sergii, Dmitry Ryabogin y Christos Saroglou. "Star Bodies with Completely Symmetric Sections". International Mathematics Research Notices 2019, n.º 10 (11 de septiembre de 2017): 3015–31. http://dx.doi.org/10.1093/imrn/rnx211.

Texto completo
Resumen
Abstract We say that a star body $K$ is completely symmetric if it has centroid at the origin and its symmetry group $G$ forces any ellipsoid whose symmetry group contains $G$, to be a ball. In this short note, we prove that if all central sections of a star body $L$ are completely symmetric, then $L$ has to be a ball. A special case of our result states that if all sections of $L$ are origin symmetric and 1-symmetric, then $L$ has to be a Euclidean ball. This answers a question from [12]. Our result is a consequence of a general theorem that we establish, stating that if the restrictions to almost all equators of a real function $f$ defined on the sphere, are isotropic functions, then $f$ is constant a.e. In the last section of this note, applications, improvements, and related open problems are discussed, and two additional open questions from [11] and [12] are answered.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Makai, E., H. Martini y T. Ódor. "Maximal sections and centrally symmetric bodies". Mathematika 47, n.º 1-2 (diciembre de 2000): 19–30. http://dx.doi.org/10.1112/s0025579300015680.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Evans, D. V. y P. McIver. "Trapped waves over symmetric thin bodies". Journal of Fluid Mechanics 223, n.º -1 (febrero de 1991): 509. http://dx.doi.org/10.1017/s0022112091001520.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Ball, Keith. "The plank problem for symmetric bodies". Inventiones mathematicae 104, n.º 1 (diciembre de 1991): 535–43. http://dx.doi.org/10.1007/bf01245089.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Dann, Susanna y Marisa Zymonopoulou. "Sections of convex bodies with symmetries". Advances in Mathematics 271 (febrero de 2015): 112–52. http://dx.doi.org/10.1016/j.aim.2014.11.023.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

YANG, YUNLONG y DEYAN ZHANG. "TWO OPTIMISATION PROBLEMS FOR CONVEX BODIES". Bulletin of the Australian Mathematical Society 93, n.º 1 (5 de agosto de 2015): 137–45. http://dx.doi.org/10.1017/s0004972715000799.

Texto completo
Resumen
In this paper, we will show that the spherical symmetric slices are the convex bodies that maximise the volume, the surface area and the integral of mean curvature when the minimum width and the circumradius are prescribed and the symmetric $2$-cap-bodies are the ones which minimise the volume, the surface area and the integral of mean curvature given the diameter and the inradius.
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Lassak, Marek. "Erratum to “Approximation of convex bodies by axially symmetric bodies”". Proceedings of the American Mathematical Society 131, n.º 7 (10 de febrero de 2003): 2301. http://dx.doi.org/10.1090/s0002-9939-03-07225-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Makeev, V. V. "Lattice Packings of Mirror Symmetric or Centrally Symmetric Three-Dimensional Convex Bodies". Journal of Mathematical Sciences 212, n.º 5 (8 de enero de 2016): 536–41. http://dx.doi.org/10.1007/s10958-016-2683-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Angeles Alfonseca, M. y Jaegil Kim. "On the Local Convexity of Intersection Bodies of Revolution". Canadian Journal of Mathematics 67, n.º 1 (1 de febrero de 2015): 3–27. http://dx.doi.org/10.4153/cjm-2013-039-4.

Texto completo
Resumen
AbstractOne of the fundamental results in convex geometry is Busemann's theorem, which states that the intersection body of a symmetric convex body is convex. Thus, it is only natural to ask if there is a quantitative version of Busemann's theorem, i.e., if the intersection body operation actually improves convexity. In this paper we concentrate on the symmetric bodies of revolution to provide several results on the (strict) improvement of convexity under the intersection body operation. It is shown that the intersection body of a symmetric convex body of revolution has the same asymptotic behavior near the equator as the Euclidean ball. We apply this result to show that in sufficiently high dimension the double intersection body of a symmetric convex body of revolution is very close to an ellipsoid in the Banach–Mazur distance. We also prove results on the local convexity at the equator of intersection bodies in the class of star bodies of revolution.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Srivastava, D. K. "Slowly Vibrating Axially Symmetric Bodies-Transverse Flow". International Journal of Applied Mechanics and Engineering 26, n.º 1 (29 de enero de 2021): 226–50. http://dx.doi.org/10.2478/ijame-2021-0014.

Texto completo
Resumen
Abstract Stokes drag on axially symmetric bodies vibrating slowly along the axis of symmetry placed under a uniform transverse flow of the Newtonian fluid is calculated. The axially symmetric bodies of revolution are considered with the condition of continuously turning tangent. The results of drag on sphere, spheroid, deformed sphere, egg-shaped body, cycloidal body, Cassini oval, and hypocycloidal body are found to be new. The numerical values of frictional drag on a slowly vibrating needle shaped body and flat circular disk are calculated as particular cases of deformed sphere.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Tanno, Shukichi. "Central sections of centrally symmetric convex bodies". Kodai Mathematical Journal 10, n.º 3 (1987): 343–61. http://dx.doi.org/10.2996/kmj/1138037465.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Tikhomirov, Konstantin. "ILLUMINATION OF CONVEX BODIES WITH MANY SYMMETRIES". Mathematika 63, n.º 2 (enero de 2017): 372–82. http://dx.doi.org/10.1112/s0025579316000292.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Rosales, Cesar. "Isoperimetric regions in rotationally symmetric convex bodies". Indiana University Mathematics Journal 52, n.º 5 (2003): 1201–14. http://dx.doi.org/10.1512/iumj.2003.52.2320.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Jiang, Xin-Dong, Houjun Zhang, Yuanlin Zhang y Weili Zhao. "Development of non-symmetric thiophene-fused BODIPYs". Tetrahedron 68, n.º 47 (noviembre de 2012): 9795–801. http://dx.doi.org/10.1016/j.tet.2012.09.011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Doležel, Ivo, Jerzy Barglik y Bohuš Ulrych. "Continual induction hardening of axi-symmetric bodies". Journal of Materials Processing Technology 161, n.º 1-2 (abril de 2005): 269–75. http://dx.doi.org/10.1016/j.jmatprotec.2004.07.035.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

�dor, T. y P. M. Gruber. "Ellipsoids are the most symmetric convex bodies". Archiv der Mathematik 73, n.º 5 (1 de noviembre de 1999): 394–400. http://dx.doi.org/10.1007/s000130050414.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Pérez-Gavilán, J. J. y M. H. Aliabadi. "Symmetric Galerkin BEM for multi-connected bodies". Communications in Numerical Methods in Engineering 17, n.º 11 (10 de octubre de 2001): 761–70. http://dx.doi.org/10.1002/cnm.444.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Fantoni, Carlo, Sara Rigutti y Walter Gerbino. "Bodily action penetrates affective perception". PeerJ 4 (15 de febrero de 2016): e1677. http://dx.doi.org/10.7717/peerj.1677.

Texto completo
Resumen
Fantoni & Gerbino (2014) showed that subtle postural shifts associated with reaching can have a strong hedonic impact and affect how actors experience facial expressions of emotion. Using a novel Motor Action Mood Induction Procedure (MAMIP), they found consistent congruency effects in participants who performed a facial emotionidentificationtask after a sequence of visually-guided reaches: a face perceived as neutral in a baseline condition appeared slightly happy after comfortable actions and slightly angry after uncomfortable actions. However, skeptics about the penetrability of perception (Zeimbekis & Raftopoulos, 2015) would consider such evidence insufficient to demonstrate that observer’s internal states induced by action comfort/discomfort affect perception in a top-down fashion. The action-modulated mood might have produced a back-end memory effect capable of affecting post-perceptual and decision processing, but not front-end perception.Here, we present evidence that performing a facial emotiondetection(not identification) task after MAMIP exhibits systematic mood-congruentsensitivitychanges, rather than responsebiaschanges attributable to cognitive set shifts; i.e., we show that observer’s internal states induced by bodily action can modulate affective perception. The detection threshold forhappinesswas lower after fifty comfortable than uncomfortable reaches; while the detection threshold forangerwas lower after fifty uncomfortable than comfortable reaches. Action valence induced an overall sensitivity improvement in detecting subtle variations of congruent facial expressions (happiness afterpositivecomfortable actions, anger afternegativeuncomfortable actions), in the absence of significant response bias shifts. Notably, both comfortable and uncomfortable reaches impact sensitivity in an approximately symmetric way relative to a baseline inaction condition. All of these constitute compelling evidence of a genuine top-down effect on perception: specifically, facial expressions of emotion arepenetrableby action-induced mood. Affective priming by action valence is a candidate mechanism for the influence of observer’s internal states on properties experienced as phenomenally objective and yet loaded with meaning.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Aramyan, R. H. "The Sine Representation of Centrally Symmetric Convex Bodies". Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences) 53, n.º 6 (noviembre de 2018): 363–68. http://dx.doi.org/10.3103/s1068362318060079.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Fradelizi, Matthieu, Alfredo Hubard, Mathieu Meyer, Edgardo Roldán-Pensado y Artem Zvavitch. "Equipartitions and Mahler volumes of symmetric convex bodies". American Journal of Mathematics 144, n.º 5 (octubre de 2022): 1201–19. http://dx.doi.org/10.1353/ajm.2022.0027.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Saigal, Sunil, R. Aithal y Carl T. Dyka. "Boundary element design sensitivity analysis of symmetric bodies". AIAA Journal 28, n.º 1 (enero de 1990): 180–83. http://dx.doi.org/10.2514/3.10373.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Godin, Oleg A. "Rayleigh scattering of sound by spherically symmetric bodies". Journal of the Acoustical Society of America 133, n.º 5 (mayo de 2013): 3253. http://dx.doi.org/10.1121/1.4805239.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Gritzmann, Peter. "Lattice covering of space with symmetric convex bodies". Mathematika 32, n.º 2 (diciembre de 1985): 311–15. http://dx.doi.org/10.1112/s0025579300011086.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Nadal, François y Eric Lauga. "Small acoustically forced symmetric bodies in viscous fluids". Journal of the Acoustical Society of America 139, n.º 3 (marzo de 2016): 1081–92. http://dx.doi.org/10.1121/1.4942592.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Böröczky, Károly J., Erwin Lutwak, Deane Yang, Gaoyong Zhang y Yiming Zhao. "The dual Minkowski problem for symmetric convex bodies". Advances in Mathematics 356 (noviembre de 2019): 106805. http://dx.doi.org/10.1016/j.aim.2019.106805.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Freddi, Francesco y Gianni Royer-Carfagni. "Symmetric Galerkin BEM for bodies with unconstrained contours". Computer Methods in Applied Mechanics and Engineering 195, n.º 9-12 (febrero de 2006): 961–81. http://dx.doi.org/10.1016/j.cma.2005.02.014.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Ali, Hasrat, Brigitte Guérin y Johan E. van Lier. "gem-Dibromovinyl boron dipyrrins: synthesis, spectral properties and crystal structures". Dalton Transactions 48, n.º 30 (2019): 11492–507. http://dx.doi.org/10.1039/c9dt02309g.

Texto completo
Resumen
New asymmetric/symmetric BODIPY derivatives, bearing gem-dibromovinyl substituents were synthesized and studied for their absorption, fluorescence, solvatochromism, X-ray crystallography and Hirshfeld surface analysis to determine molecular structures.
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

HOU, Peiwen y Hailin JIN. "The Minkowski Measure of Asymmetry for Spherical Bodies of Constant Width". Wuhan University Journal of Natural Sciences 27, n.º 5 (octubre de 2022): 367–71. http://dx.doi.org/10.1051/wujns/2022275367.

Texto completo
Resumen
In this paper, we introduce the Minkowski measure of asymmetry for the spherical bodies of constant width. Then we prove that the spherical balls are the most symmetric bodies among all spherical bodies of constant width, and the completion of the spherical regular simplexes are the most asymmetric bodies.
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Tekasakul, P., R. V. Tompson y S. K. Loyalka. "Rotatory oscillations of arbitrary axi-symmetric bodies in an axi-symmetric viscous flow: Numerical solutions". Physics of Fluids 10, n.º 11 (noviembre de 1998): 2797–818. http://dx.doi.org/10.1063/1.869803.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Makai, E. y H. Martini. "Centrally symmetric convex bodies and sections having maximal quermassintegrals". Studia Scientiarum Mathematicarum Hungarica 49, n.º 2 (1 de junio de 2012): 189–99. http://dx.doi.org/10.1556/sscmath.49.2012.2.1197.

Texto completo
Resumen
Let d ≧ 2, and let K ⊂ ℝd be a convex body containing the origin 0 in its interior. In a previous paper we have proved the following. The body K is 0-symmetric if and only if the following holds. For each ω ∈ Sd−1, we have that the (d − 1)-volume of the intersection of K and an arbitrary hyperplane, with normal ω, attains its maximum if the hyperplane contains 0. An analogous theorem, for 1-dimensional sections and 1-volumes, has been proved long ago by Hammer (see [2]). In this paper we deal with the ((d − 2)-dimensional) surface area, or with lower dimensional quermassintegrals of these intersections, and prove an analogous, but local theorem, for small C2-perturbations, or C3-perturbations of the Euclidean unit ball, respectively.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Muñoz-Fernández, G. A., S. Gy Révész y J. B. Seoane-Sepúlveda. "Geometry of homogeneous polynomials on non symmetric convex bodies". MATHEMATICA SCANDINAVICA 105, n.º 1 (1 de septiembre de 2009): 147. http://dx.doi.org/10.7146/math.scand.a-15111.

Texto completo
Resumen
If $\Delta$ stands for the region enclosed by the triangle in ${\mathsf R}^2$ of vertices $(0,0)$, $(0,1)$ and $(1,0)$ (or simplex for short), we consider the space ${\mathcal P}(^2\Delta)$ of the 2-homogeneous polynomials on ${\mathsf R}^2$ endowed with the norm given by $\|ax^2+bxy+cy^2\|_\Delta:=\sup\{|ax^2+bxy+cy^2|:(x,y)\in\Delta\}$ for every $a,b,c\in{\mathsf R}$. We investigate some geometrical properties of this norm. We provide an explicit formula for $\|\cdot\|_\Delta$, a full description of the extreme points of the corresponding unit ball and a parametrization and a plot of its unit sphere. Using this geometrical information we also find sharp Bernstein and Markov inequalities for ${\mathcal P}(^2\Delta)$ and show that a classical inequality of Martin does not remain true for homogeneous polynomials on non symmetric convex bodies.
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Shyroki, Dzmitry M. "Efficient Cartesian-Grid-Based Modeling of Rotationally Symmetric Bodies". IEEE Transactions on Microwave Theory and Techniques 55, n.º 6 (junio de 2007): 1132–38. http://dx.doi.org/10.1109/tmtt.2007.897841.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Doyle, P. G., J. C. Lagarias y D. Randall. "Self-packing of centrally symmetric convex bodies in ℝ2". Discrete & Computational Geometry 8, n.º 2 (agosto de 1992): 171–89. http://dx.doi.org/10.1007/bf02293042.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Sargand, S. M., H. H. Chen y Y. C. Das. "Method of initial functions for axially symmetric elastic bodies". International Journal of Solids and Structures 29, n.º 6 (1992): 711–19. http://dx.doi.org/10.1016/0020-7683(92)90122-a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Meckes, Mark W. "Sylvester’s Problem for Symmetric Convex Bodies and Related Problems". Monatshefte für Mathematik 145, n.º 4 (27 de mayo de 2005): 307–19. http://dx.doi.org/10.1007/s00605-005-0300-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Henze, Matthias. "A Blichfeldt-type inequality for centrally symmetric convex bodies". Monatshefte für Mathematik 170, n.º 3-4 (21 de diciembre de 2012): 371–79. http://dx.doi.org/10.1007/s00605-012-0461-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Fourment, Lionel. "A quasi-symmetric formulation for contact between deformable bodies". European Journal of Computational Mechanics 17, n.º 5-7 (enero de 2008): 907–18. http://dx.doi.org/10.3166/remn.17.907-918.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Goodey, Paul y Wolfgang Weil. "Centrally symmetric convex bodies and the spherical Radon transform". Journal of Differential Geometry 35, n.º 3 (1992): 675–88. http://dx.doi.org/10.4310/jdg/1214448262.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Milman, V. D. y A. Pajor. "Entropy and Asymptotic Geometry of Non-Symmetric Convex Bodies". Advances in Mathematics 152, n.º 2 (junio de 2000): 314–35. http://dx.doi.org/10.1006/aima.1999.1903.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Révész, Szilárd. "Uniqueness of Markov-Extremal Polynomials on Symmetric Convex Bodies". Constructive Approximation 17, n.º 3 (enero de 2001): 465–78. http://dx.doi.org/10.1007/s003650010043.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Dar, S. "On the isotropic constant of non-symmetric convex bodies". Israel Journal of Mathematics 97, n.º 1 (diciembre de 1997): 151–56. http://dx.doi.org/10.1007/bf02774032.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Stancu, Alina. "The logarithmic Minkowski inequality for non-symmetric convex bodies". Advances in Applied Mathematics 73 (febrero de 2016): 43–58. http://dx.doi.org/10.1016/j.aam.2015.09.015.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Datta, Sunil y Deepak Kumar Srivastava. "Stokes drag on axially symmetric bodies: a new approach". Proceedings - Mathematical Sciences 109, n.º 4 (noviembre de 1999): 441–52. http://dx.doi.org/10.1007/bf02838005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Kathnelson, A. N. "COUPLED TIMOSHENKO BEAM VIBRATION EQUATIONS FOR FREE SYMMETRIC BODIES". Journal of Sound and Vibration 195, n.º 2 (agosto de 1996): 348–52. http://dx.doi.org/10.1006/jsvi.1996.0429.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Quarti, Michael, Andreas Gottlieb, Karl Bühler y Gerhard Kachel. "Rotation-Symmetric Referencebodys For Energy Efficient Flow Around Bodies". PAMM 12, n.º 1 (diciembre de 2012): 557–58. http://dx.doi.org/10.1002/pamm.201210267.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía