Artículos de revistas sobre el tema "Blunt body"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Blunt body.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Blunt body".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Hollis, Brian R. y Salvatore Borrelli. "Aerothermodynamics of blunt body entry vehicles". Progress in Aerospace Sciences 48-49 (enero de 2012): 42–56. http://dx.doi.org/10.1016/j.paerosci.2011.09.005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Li, Yong Hong, Xin Wu Tang y Wei Qun Zhou. "Aerodynamic and Numerical Study on the Influence of Spike Shapes at Mach 1.5". Advanced Materials Research 1046 (octubre de 2014): 177–81. http://dx.doi.org/10.4028/www.scientific.net/amr.1046.177.

Texto completo
Resumen
Taking into account the issue of configuration or aerodynamic heating, most supersonic and hypersonic flight vehicles have to use the blunt-nosed body. However, in supersonic especially in hypersonic flow the strong bow shock ahead of the blunt nose introduces a rather high shock drag that affects the aerodynamic performance of the vehicles seriously. A spike mounted on a blunt body during its flight pushes the strong bow shock away from the body surface and forms recirculation flow with low pressure ahead of the body surface, and then decreases the drag. The drag reduction effects of spikes in high supersonic and hypersonic flow had been validated through experimental and numerical methods. In order to analyze the influence of the spike on aerodynamic characteristics at low supersonic (M=1.5) flow past blunt-nosed bodies, numerical studies were carried out which included the influence of the spike shape, the analysis of the fluid flow structures and the effect on the aerodynamic characteristics of a blunt body.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Watanabe, Yasumasa, Kojiro Suzuki y Ethirajan Rathakrishnan. "Aerodynamic characteristics of breathing blunt nose configuration at hypersonic speeds". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 231, n.º 5 (19 de abril de 2016): 840–58. http://dx.doi.org/10.1177/0954410016643979.

Texto completo
Resumen
Breathing blunt nose technique is one of the promising methods for reducing the drag of blunt-nosed body at hypersonic speeds. The air, traversed by the bow shock positioned ahead of the nose, at the stagnation region is allowed to enter through a hole at the blunt-nose and ejected at the rear part (base region) of the body. This manipulation reduces the positive pressure over the stagnation regions of the nose and increases the pressure at the base, resulting in reduced suction at the base. The simultaneous manifestation of reducing the compression at the nose and suction at the base regions results in reduction of the total drag. The drag reduction caused by the breathing blunt nose technique has been measured in a Mach 7 tunnel. Also, the drag and flow field around the blunt-nosed body, with and without breathing hole, has been computed. The aerodynamic characteristics of the breathing blunt nose model obtained experimentally are compared with the CFD results. It is found that the breathing results in 5% reduction in drag. The lift coefficient also comes down for the model with breathing nose. But the lift-to-drag ratio is found to be the same for both the cases; the blunt-nosed body with and without nose-hole.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Kazemba, Cole D., Robert D. Braun, Ian G. Clark y Mark Schoenenberger. "Survey of Blunt-Body Supersonic Dynamic Stability". Journal of Spacecraft and Rockets 54, n.º 1 (enero de 2017): 109–27. http://dx.doi.org/10.2514/1.a33552.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Shang, J. S., J. Hayes, J. Menart y J. Miller. "Blunt Body in Hypersonic Electromagnetic Flow Field". Journal of Aircraft 40, n.º 2 (marzo de 2003): 314–22. http://dx.doi.org/10.2514/2.3095.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Carlson, Henry A. "Aerothermodynamic Analyses of Hypersonic, Blunt-Body Flows". Journal of Spacecraft and Rockets 36, n.º 6 (noviembre de 1999): 912–15. http://dx.doi.org/10.2514/2.3511.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Knops, R. J. y Piero Villaggio. "An Approximate Treatment of Blunt Body Impact". Journal of Elasticity 72, n.º 1-3 (2003): 213–28. http://dx.doi.org/10.1023/b:elas.0000018776.92471.36.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Dogra, Virendra K., James N. Moss, Richard G. Wilmoth, Jeff C. Taylor y H. A. Hassan. "Blunt body rarefied wakes for Earth entry". Journal of Thermophysics and Heat Transfer 9, n.º 3 (julio de 1995): 464–70. http://dx.doi.org/10.2514/3.688.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Golovachev, Yu P., V. B. Zemlyakov y E. V. Matvienko. "Supersonic swirling flow past a blunt body". Fluid Dynamics 29, n.º 6 (noviembre de 1994): 869–71. http://dx.doi.org/10.1007/bf02040797.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Ng, K. C. "Retention of an ingested small blunt foreign body". Journal of the Belgian Society of Radiology 94, n.º 6 (7 de junio de 2011): 339. http://dx.doi.org/10.5334/jbr-btr.702.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Shang, J. S. "Plasma Injection for Hypersonic Blunt-Body Drag Reduction". AIAA Journal 40, n.º 6 (junio de 2002): 1178–86. http://dx.doi.org/10.2514/2.1769.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Stalker, R. J. y B. P. Edwards. "Hypersonic Blunt-Body Flows in Hydrogen-Neon Mixtures". Journal of Spacecraft and Rockets 35, n.º 6 (noviembre de 1998): 729–35. http://dx.doi.org/10.2514/2.3399.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Park, Gisu, Sudhir L. Gai y Andrew J. Neely. "Aerothermodynamics Behind a Blunt Body at Superorbital Speeds". AIAA Journal 48, n.º 8 (agosto de 2010): 1804–16. http://dx.doi.org/10.2514/1.j050251.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Koenig, Keith, David H. Bridges y Gary T. Chapman. "Transonic flow modes of an axisymmetric blunt body". AIAA Journal 27, n.º 9 (septiembre de 1989): 1301–2. http://dx.doi.org/10.2514/3.10262.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Kopriva, David A. "Spectral solution of the viscous blunt-body problem". AIAA Journal 31, n.º 7 (julio de 1993): 1235–42. http://dx.doi.org/10.2514/3.11758.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Dogra, Virendra K., James N. Moss, Richard G. Wilmoth, Jeff C. Taylor y H. A. Hassan. "Effects of chemistry on blunt-body wake structure". AIAA Journal 33, n.º 3 (marzo de 1995): 463–69. http://dx.doi.org/10.2514/3.12426.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

MORISHITA, Etsuo. "Spreadsheet Fluid Dynamics of a Blunt Body Problem." JSME International Journal Series B 45, n.º 4 (2002): 780–87. http://dx.doi.org/10.1299/jsmeb.45.780.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Edwin, M., Sujay Iswarian Isaac, M. Pradeep y L. Nagarajan. "COMPUTATIONAL STUDY OF AERO-SPIKE ON BLUNT BODY". IOP Conference Series: Materials Science and Engineering 623 (18 de octubre de 2019): 012022. http://dx.doi.org/10.1088/1757-899x/623/1/012022.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Korobkin, Alexander. "Blunt-body impact on a compressible liquid surface". Journal of Fluid Mechanics 244, n.º -1 (noviembre de 1992): 437. http://dx.doi.org/10.1017/s0022112092003136.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Shyu, Jeffrey Y., Reza Askari y Bharti Khurana. "R-SCAN: Whole-Body Blunt Trauma CT Imaging". Journal of the American College of Radiology 14, n.º 4 (abril de 2017): 531–33. http://dx.doi.org/10.1016/j.jacr.2016.11.010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Borodich, F. M. "Wave front in the blunt body immersion problem". Fluid Dynamics 27, n.º 4 (1993): 451–56. http://dx.doi.org/10.1007/bf01051318.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Mansour, Kamyar y Mahdi Khorsandi. "The drag reduction in spherical spiked blunt body". Acta Astronautica 99 (junio de 2014): 92–98. http://dx.doi.org/10.1016/j.actaastro.2014.02.009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Shang, J. S. "Plasma injection for hypersonic blunt-body drag reduction". AIAA Journal 40 (enero de 2002): 1178–86. http://dx.doi.org/10.2514/3.15179.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Ryzhov, Oleg S., Julian D. Cole y Norman D. Malmuth. "A Blunt-Nosed Thin Body in Hypersonic Flow". SIAM Journal on Applied Mathematics 58, n.º 2 (abril de 1998): 345–69. http://dx.doi.org/10.1137/s0036139996299492.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Bruneau, Charles-Henri. "Computation of hypersonic flows round a blunt body". Computers & Fluids 19, n.º 2 (enero de 1991): 231–42. http://dx.doi.org/10.1016/0045-7930(91)90035-g.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Qin, Qihao y Jinglei Xu. "Aeroheating reduction for blunt body using aerodome jet". Acta Astronautica 159 (junio de 2019): 17–26. http://dx.doi.org/10.1016/j.actaastro.2019.03.042.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Ye, En Li, Yi Hong Zhou y Lei Ren. "Analysis on the Flow Passed a Pervious Cubic-Blunt Body Based on Large Eddy Simulation". Applied Mechanics and Materials 353-356 (agosto de 2013): 2477–81. http://dx.doi.org/10.4028/www.scientific.net/amm.353-356.2477.

Texto completo
Resumen
To overcome the deficiency that model experiments are unable to take accurate measurements without damaging the structure of the fine flow fields, a large eddy simulation is employed to simulate the three dimensional structure of the flow passed a pervious cubic-blunt body at Re=2.2×104. A comparative analysis have been taken qualitatively and quantitatively between the flow passed a pervious cubic-blunt body and the flow passed a non-pervious cubic-blunt body from the aspects of the flow structure (mainly including separation and reattachment), unsteady vortex shedding, distribution of static pressure and drag coefficient, etc. Therefore, characteristics of this kind of flow field are concluded and along with a better understanding of concrete effects they bring, which can give guidance to engineering.
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

MATHUR, N., K. K. R. SHARMA y V. K. TIWARI. "An Unusual Foreign Body in Hand a Case Report". Journal of Hand Surgery 11, n.º 1 (febrero de 1986): 135–36. http://dx.doi.org/10.1016/0266-7681_86_90037-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Hu, Xing Jun, Lei Liao, Xiu Cheng Li, Chang Hai Yang, Peng Guo, Bo Yang, Jing Yu Wang y Dong Liang. "Research on Automobile Aerodynamic Drag Reduction Based on Isobaric Surface of a Blunt Body". Applied Mechanics and Materials 328 (junio de 2013): 634–38. http://dx.doi.org/10.4028/www.scientific.net/amm.328.634.

Texto completo
Resumen
This paper focuses on a new method of aerodynamic drag reduction. In this paper numerical simulation method is adopted to investigate the relationship between the aerodynamic drag characteristics of a blunt body and the distribution of total pressure around the body. The study shows that when the shape of a blunt body is modified to be close to its isobaric surface, the pressure drag of the body can be reduced largely while the viscous drag increases slightly, and the summary of the drag gets lower as a result. This conclusion will have profound guiding significance in the aerodynamic shape designing and the aerodynamic drag reduction of an automobile.
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Sai Madhuri, K., Sudhakar Uppalapati y S. P. Jani. "Modeling and simulation of aerothermodynamics hot radiant blunt body". Materials Today: Proceedings 46 (2021): 8133–37. http://dx.doi.org/10.1016/j.matpr.2021.03.105.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

MATSUGANE, Hayato, Naoto KATO, Hiroaki HASEGAWA y Hiroto NARITA. "Effect of Microbubbles on Flow around a Blunt Body". Proceedings of Conference of Kanto Branch 2021.27 (2021): 11E17. http://dx.doi.org/10.1299/jsmekanto.2021.27.11e17.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Viviani, Antonio y Giuseppe Pezzella. "Computational Flowfield Analysis over a Blunt-Body Reentry Vehicle". Journal of Spacecraft and Rockets 47, n.º 2 (marzo de 2010): 258–70. http://dx.doi.org/10.2514/1.40876.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Josyula, Eswar y William F. Bailey. "Vibration-Dissociation Coupling Model for Hypersonic Blunt-Body Flow". AIAA Journal 41, n.º 8 (agosto de 2003): 1611–13. http://dx.doi.org/10.2514/2.2118.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Shang, J. S., J. Hayes y J. Menart. "Hypersonic Flow over a Blunt Body with Plasma Injection". Journal of Spacecraft and Rockets 39, n.º 3 (mayo de 2002): 367–75. http://dx.doi.org/10.2514/2.3835.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Hollis, Brian R. "Blunt-Body Entry Vehicle Aerotherodynamics: Transition and Turbulent Heating". Journal of Spacecraft and Rockets 49, n.º 3 (mayo de 2012): 435–49. http://dx.doi.org/10.2514/1.51864.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

MacCormack, Robert W. "Carbuncle Computational Fluid Dynamics Problem for Blunt-Body Flows". Journal of Aerospace Information Systems 10, n.º 5 (mayo de 2013): 229–39. http://dx.doi.org/10.2514/1.53684.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Ess, P. R., J. P. Sislian y C. B. Allen. "Blunt-Body Generated Detonation in Viscous Hypersonic Ducted Flows". Journal of Propulsion and Power 21, n.º 4 (julio de 2005): 667–80. http://dx.doi.org/10.2514/1.5579.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Sakai, Takeharu, Tomoko Tsuru y Keisuke Sawada. "Computation of Hypersonic Radiating Flowfield over a Blunt Body". Journal of Thermophysics and Heat Transfer 15, n.º 1 (enero de 2001): 91–98. http://dx.doi.org/10.2514/2.6583.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

MORETTI, GINO y MICHAEL ABBETT. "A Time-Dependent Computaional Method for Blunt Body Flows". Journal of Spacecraft and Rockets 40, n.º 5 (septiembre de 2003): 736–41. http://dx.doi.org/10.2514/2.6898.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Riggins, David, H. F. Nelson y Eric Johnson. "Blunt-Body Wave Drag Reduction Using Focused Energy Deposition". AIAA Journal 37, n.º 4 (abril de 1999): 460–67. http://dx.doi.org/10.2514/2.756.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Agranat, V. M. y A. V. Milovanova. "Quasifrozen dusty laminar boundary layer on a blunt body". Fluid Dynamics 25, n.º 6 (1991): 953–56. http://dx.doi.org/10.1007/bf01049711.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Riggins, David, H. F. Nelson y Eric Johnson. "Blunt-body wave drag reduction using focused energy deposition". AIAA Journal 37 (enero de 1999): 460–67. http://dx.doi.org/10.2514/3.14192.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Gans, Bradley y Aaron Sodickson. "Imaging of Blunt Bowel, Mesenteric, and Body Wall Trauma". Seminars in Roentgenology 51, n.º 3 (julio de 2016): 230–38. http://dx.doi.org/10.1053/j.ro.2015.12.004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Fey, M., R. Jeltsch y S. Müller. "Stagnation point computations of nonequilibrium inviscid blunt body flow". Computers & Fluids 22, n.º 4-5 (julio de 1993): 501–15. http://dx.doi.org/10.1016/0045-7930(93)90022-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Dunnett, S. J. y D. B. Ingham. "A mathematical theory to two-dimensional blunt body sampling". Journal of Aerosol Science 17, n.º 5 (enero de 1986): 839–53. http://dx.doi.org/10.1016/0021-8502(86)90037-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Wen, X. y D. B. Ingham. "Blunt body sampling in a laminar and turbulent wind". Journal of Aerosol Science 23 (enero de 1992): 567–70. http://dx.doi.org/10.1016/0021-8502(92)90475-b.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Falcoz, C., B. Weigand y P. Ott. "Experimental investigations on showerhead cooling on a blunt body". International Journal of Heat and Mass Transfer 49, n.º 7-8 (abril de 2006): 1287–98. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.10.012.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Yamawaki, Takafumi, Hideaki Ogawa, Takeo Okunuki, Hisao Koyama, Hiroshi Itoh y Etsuo Morishita. "Fore-Body Drag Reduction of a Blunt Body in Compressible Thrbulent Boundary Layer." JOURNAL OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES 50, n.º 586 (2002): 474–76. http://dx.doi.org/10.2322/jjsass.50.474.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Barjasteh, Mojtaba y Hamid Zeraatgar. "Numerical Simulation of Cushioning Problem for Blunt Bodies Using Boundary Element Method". Polish Maritime Research 25, s1 (1 de mayo de 2018): 85–93. http://dx.doi.org/10.2478/pomr-2018-0028.

Texto completo
Resumen
Abstract Induced air pressure and resulting free surface profile due to air cushioning layer is studied. The study is mainly focused on 2D blunt circular bodies with constant downward speed. The problem is first solved for the air flow between the body and the free surface of the water. Then the results are employed to solve the problem for the water problem, numerically. Both air and water problem are assumed to be governed by Laplace potential equation. Depending on the induced pressure and velocity of the escaping air flow from cushioning layer, compressibility of the air is also included in the modeling. Gravitational acceleration is also included in the model. An iterative boundary element method is used for numerical solution of both air and water problems. Instantaneous pressure distribution and free surface profile are evaluated for different bodies. The results of calculation for large blunt bodies show that inviscid potential method can fairly approximate the problem for large blunt bodies. Additionally, the behavior of the air pressure for the very blunt body is impulsive and the magnitude of the peak pressure is in order of impact pressure of water entry. The obtained results are compared with analytical method. The comparison shows that as the bluntness of a body increases, the better agreement is concluded.
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Foon, Lee Lye, M. H. A. Khamaruddin y S. A. Showkat Ali. "Numerical investigation of the effect of bluff body bluntness factor on the wake-vortex pattern". Journal of Physics: Conference Series 2051, n.º 1 (1 de octubre de 2021): 012070. http://dx.doi.org/10.1088/1742-6596/2051/1/012070.

Texto completo
Resumen
Abstract The research is concerned with the flow pattern and vortex shedding around a blunt trailing edge bluff body. The aim is to investigate the effect of the bluntness factor of the trailing edge on the fluid-flow for various aerodynamic purposes. This study is performed by using the blunt trailing edge plates with various thickness values ranging from 0.025 mm to 60 mm. Large Eddy Simulation (LES) turbulence model from ANSYS Fluent software is used to carry out the numerical simulation. The results show that the vortex formation range for the smallest bluntness thickness are relatively smaller than that of the larger bluntness thickness ratio. Generally, the intensity of the vortex street becomes stronger as the thickness of the plate increases, except for the blunt thickness of 10 mm due to the effect of the vortex eye location and the formation length. The influence of the bluntness thickness of the trailing edge has been identified as an important parameter to avert the drag issue associated with the blunt bodies. The most important aspect of this article is that the current study has unravelled that the vortex shedding occurs at the ratio below the known critical value. Further investigations are needed to better understand the underlying physics associated with the vortex shedding from various bluntness thickness.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía