Libros sobre el tema "Black rot disease"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Black rot disease.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 18 mejores mejores libros para su investigación sobre el tema "Black rot disease".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore libros sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Hunt, R. S. Black stain root disease. Victoria, B.C: Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 1995.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Lundquist, J. E. Distribution and causes of canopy gaps in white spruce in the Black Hills. [Fort Collins, CO] (240 Prospect Rd., Fort Collins 80526): USDA Forest Service, Rocky Mountain Forest and Range Experiment Station, 1993.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Hessburg, Paul F. Black stain root disease of conifers. [Washington, D.C.?]: U.S. Dept. of Agriculture, Forest Service, 1995.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Hessburg, Paul F. Black stain root disease of conifers. [Washington, D.C.?]: U.S. Dept. of Agriculture, Forest Service, 1995.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Alvarez, A. M. Black rot of cabbage in Hawaii. Honolulu, Hawaii: HITAHR, College of Tropical Agriculture and Human Resources, University of Hawaii, 1987.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Peck, Eva Jane y Michelle Gemma. The Root of Twinkle. Housatonic, MA: Eva Peck and Michelle Gemma, 2020.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Antonelli, Arthur L. Root weevil control on rhododendrons. Pullman: Cooperative Extension, Washington State University, 2001.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

DeAngelis, Jack D. Root weevils in the nursery and landscape: Identification and control. [Corvallis, Or.]: Oregon State University Extension Service, 1997.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Lessard, Gene. Association of Armillaria root disease with mountain pine beetle infestations on the Black Hills National Forest, South Dakota. Fort Collins, Colo: U.S. Dept. of Agriculture, Forest Service, Forest Pest Management, Methods Application Group, 1985.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Sharon, E. M. Evaluation of control measures for black stain root disease in pinyon pine in southwestern Colorado. 1987.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Holah, J. C. Armillaria root disease and affected acreage on three Ranger Districts on the Black Hills National Forest. 1993.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Hessburg, P. F. Black stain root disease of conifers. 1995.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Distribution and causes of canopy gaps in white spruce in the Black Hills. [Fort Collins, CO] (240 Prospect Rd., Fort Collins 80526): USDA Forest Service, Rocky Mountain Forest and Range Experiment Station, 1993.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Lundquist, J. E. Distribution of armillaria root disease in the Black Hills. 1991.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Gleń-Karolczyk, Katarzyna. Zabiegi ochronne kształtujące plonowanie zdrowotność oraz różnorodność mikroorganizmów związanych z czernieniem pierścieniowym korzeni chrzanu (Atmoracia rusticana Gaertn.). Publishing House of the University of Agriculture in Krakow, 2019. http://dx.doi.org/10.15576/978-83-66602-39-7.

Texto completo
Resumen
Horseradish roots, due to the content of many valuable nutrients and substances with healing and pro-health properties, are used more and more in medicine, food industry and cosmetics. In Poland, the cultivation of horseradish is considered minor crops. In addition, its limited size causes horseradish producers to encounter a number of unresolved agrotechnical problems. Infectious diseases developing on the leaves and roots during the long growing season reduce the size and quality of root crops. The small range of protection products intended for use in the cultivation of horseradish generates further serious environmental problems (immunization of pathogens, low effectiveness, deterioration of the quality of raw materials intended for industry, destruction of beneficial organisms and biodiversity). In order to meet the problems encountered by horseradish producers and taking into account the lack of data on: yielding, occurrence of infectious diseases and the possibility of combating them with methods alternative to chemical ones in the years 2012–2015, rigorous experiments have been carried out. The paper compares the impact of chemical protection and its reduced variants with biological protection on: total yield of horseradish roots and its structure. The intensification of infectious diseases on horseradish leaves and roots was analyzed extensively. Correlations were examined between individual disease entities and total yield and separated root fractions. A very important and innovative part of the work was to learn about the microbial communities involved in the epidemiology of Verticillium wilt of horseradish roots. The effect was examined of treatment of horseradish cuttings with a biological preparation (Pythium oligandrum), a chemical preparation (thiophanate-methyl), and the Kelpak SL biostimulator (auxins and cytokinins from the Ecklonia maxima algae) on the quantitative and qualitative changes occurring in the communities of these microorganisms. The affiliation of species to groups of frequencies was arranged hierarchically, and the biodiversity of these communities was expressed by the following indicators: Simpson index, Shannon–Wiener index, Shannon evenness index and species richness index. Correlations were assessed between the number of communities, indicators of their biodiversity and intensification of Verticillium wilt of horseradish roots. It was shown that the total yield of horseradish roots was on average 126 dt · ha–1. Within its structure, the main root was 56%, whereas the fraction of lateral roots (cuttings) with a length of more than 20 cm accounted for 26%, and those shorter than 20 cm for 12%, with unprofitable yield (waste) of 6%. In the years with higher humidity, the total root yield was higher than in the dry seasons by around 51 dt · ha–1 on average. On the other hand, the applied protection treatments significantly increased the total yield of horseradish roots from 4,6 to 45,3 dt · ha–1 and the share of fractions of more than 30 cm therein. Higher yielding effects were obtained in variants with a reduced amount of foliar application of fungicides at the expense of introducing biopreparations and biostimulators (R1, R2, R3) and in chemical protection (Ch) than in biological protection (B1, B2) and with the limitation of treatments only to the treatment of cuttings. The largest increments can be expected after treating the seedlings with Topsin M 500 SC and spraying the leaves: 1 × Amistar Opti 480 SC, 1 × Polyversum WP, 1 × Timorex Gold 24 EC and three times with biostimulators (2 × Kelpak SL + 1 × Tytanit). In the perspective of the increasing water deficit, among the biological protection methods, the (B2) variant with the treatment of seedlings with auxins and cytokinins contained in the E. maxima algae extract is more recommended than (B1) involving the use of P. oligandrum spores. White rust was the biggest threat on horseradish plantations, whereas the following occurred to a lesser extent: Phoma leaf spot, Cylindrosporium disease, Alternaria black spot and Verticillium wilt. In turn, on the surface of the roots it was dry root rot and inside – Verticillium wilt of horseradish roots. The best health of the leaves and roots was ensured by full chemical protection (cuttings treatment + 6 foliar applications). A similar effect of protection against Albugo candida and Pyrenopeziza brassicae was achieved in the case of reduced chemical protection to one foliar treatment with synthetic fungicide, two treatments with biological preparations (Polyversum WP and Timorex Gold 24 EC) and three treatments with biostimulators (2 × Kelpak SL, 1 × Tytanit). On the other hand, the level of limitation of root diseases comparable with chemical protection was ensured by its reduced variants R3 and R2, and in the case of dry root rot, also both variants of biological protection. In the dry years, over 60% of the roots showed symptoms of Verticillium wilt, and its main culprits are Verticillium dahliae (37.4%), Globisporangium irregulare (7.2%), Ilyonectria destructans (7.0%), Fusarium acuminatum (6.7%), Rhizoctonia solani (6.0%), Epicoccum nigrum (5.4%), Alternaria brassicae (5.17%). The Kelpak SL biostimulator and the Polyversum WP biological preparation contributed to the increased biodiversity of microbial communities associated with Verticillium wilt of horseradish roots. In turn, along with its increase, the intensification of the disease symptoms decreased. There was a significant correlation between the richness of species in the communities of microbial isolates and the intensification of Verticillium wilt of horseradish roots. Each additional species of microorganism contributed to the reduction of disease intensification by 1,19%.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Witcosky, Jeffrey John. The root insect-- black-stain root disease association in Douglas-fir: Vector relationships and implications for forest management. 1985.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Witcosky, Jeffrey John. The root insect-- black-stain root disease association in Douglas-fir: Vector relationships and implications for forest management. 1985.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

MahiraPublishing. Preventing Tuberculosis Is a Thing of the Past, It Is High Time That We Aim to Eliminate Diseases from Its Root: A Blank Lined Notebook Gift for World Tuberculosis Day. Independently Published, 2021.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía