Artículos de revistas sobre el tema "Biosensing platform"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Biosensing platform.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Biosensing platform".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Kanaya, Haruichi. "Battery-less biosensing platform". Impact 2019, n.º 10 (30 de diciembre de 2019): 87–89. http://dx.doi.org/10.21820/23987073.2019.10.87.

Texto completo
Resumen
As fossil fuel levels are exhausted, building a more sustainable world is an issue that is coming to the fore as a crucial consideration in the development of new technology. The energy needs of the planet's population are immense, and an environmentally friendly source of energy is desperately needed. Energy harvesting from renewable sources is not a new concept - windmills have been around since the first century - but the desire to harness renewable energy has intensified. Energy harvesting technology is the term given to technology used for collecting unused energy from the surrounding environment and converting it into electrical power. Solar, wind and hydroelectric power are perhaps the best-known of these technologies. However, there are many other forms of energy that are under developed and hold much potential for powering the future. These include vibration, pressure, heat and temperature difference. While large-scale power generation cannot be realised using these sources due to their low levels, devices with low power demands may be able to harness such energy sources, potentially eliminating the need for an external power source. Dr Haruichi Kanaya at Kyushu University is leading a team investigating wireless technology.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Shah, Sahil, Joseph Smith, John Stowell y Jennifer Blain Christen. "Biosensing platform on a flexible substrate". Sensors and Actuators B: Chemical 210 (abril de 2015): 197–203. http://dx.doi.org/10.1016/j.snb.2014.12.075.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Mondal, Jagannath, Jeong Man An, Sachin S. Surwase, Kushal Chakraborty, Sabuj Chandra Sutradhar, Joon Hwang, Jaewook Lee y Yong-Kyu Lee. "Carbon Nanotube and Its Derived Nanomaterials Based High Performance Biosensing Platform". Biosensors 12, n.º 9 (6 de septiembre de 2022): 731. http://dx.doi.org/10.3390/bios12090731.

Texto completo
Resumen
After the COVID-19 pandemic, the development of an accurate diagnosis and monitoring of diseases became a more important issue. In order to fabricate high-performance and sensitive biosensors, many researchers and scientists have used many kinds of nanomaterials such as metal nanoparticles (NPs), metal oxide NPs, quantum dots (QDs), and carbon nanomaterials including graphene and carbon nanotubes (CNTs). Among them, CNTs have been considered important biosensing channel candidates due to their excellent physical properties such as high electrical conductivity, strong mechanical properties, plasmonic properties, and so on. Thus, in this review, CNT-based biosensing systems are introduced and various sensing approaches such as electrochemical, optical, and electrical methods are reported. Moreover, such biosensing platforms showed excellent sensitivity and high selectivity against not only viruses but also virus DNA structures. So, based on the amazing potential of CNTs-based biosensing systems, healthcare and public health can be significantly improved.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Lin, Gungun, Denys Makarov y Oliver G. Schmidt. "Magnetic sensing platform technologies for biomedical applications". Lab on a Chip 17, n.º 11 (2017): 1884–912. http://dx.doi.org/10.1039/c7lc00026j.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Donaldson, Laurie. "New biosensing platform for Covid-19 detection". Materials Today 44 (abril de 2021): 1. http://dx.doi.org/10.1016/j.mattod.2021.01.024.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Gai, Panpan, Xinke Kong, Li Pu, Mengli Zhang, Dangqiang Zhu y Feng Li. "Biofuel Cell-Driven Robust Electrochemiluminescence Biosensing Platform". Analytical Chemistry 93, n.º 34 (18 de agosto de 2021): 11745–50. http://dx.doi.org/10.1021/acs.analchem.1c01979.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Navarro, Jesús, Javier Galbán y Susana de Marcos. "A label-free platform for dopamine biosensing". Bioanalysis 10, n.º 1 (enero de 2018): 11–21. http://dx.doi.org/10.4155/bio-2017-0161.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Ashiba, Hiroki. "V-Trench Biosensor: Microfluidic Plasmonic Biosensing Platform". International Journal of Automation Technology 12, n.º 1 (5 de enero de 2018): 73–78. http://dx.doi.org/10.20965/ijat.2018.p0073.

Texto completo
Resumen
A V-trench biosensor is a sensitive biosensing platform utilizing fluorescence enhancement induced by surface plasmon resonance (SPR). Instruments for the SPR-assisted fluorescence assays, which were complicated and bulky, are drastically simplified and miniaturized by employing sensor chips equipped with prism-integrated microfluidic channels. In this review, the working principle, sensor design, and examples of virus detection of the V-trench biosensor are presented.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Morales-Narváez, Eden y Arben Merkoçi. "Graphene Oxide as an Optical Biosensing Platform". Advanced Materials 24, n.º 25 (25 de mayo de 2012): 3298–308. http://dx.doi.org/10.1002/adma.201200373.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Hsiao, Shu-Wei, Yu-Jen Chen y Jung-Tang Huang. "Portable self-flowing platform for filtration separation of samples". Analytical Methods 13, n.º 32 (2021): 3605–13. http://dx.doi.org/10.1039/d1ay00716e.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Parvez Arnob, Md Masud y Wei-Chuan Shih. "3D plasmonic nanoarchitecture as an emerging biosensing platform". Nanomedicine 12, n.º 21 (noviembre de 2017): 2577–80. http://dx.doi.org/10.2217/nnm-2017-0258.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Lee, Taeha, Changheon Kim, Jiyeon Kim, Jung Bae Seong, Youngjeon Lee, Seokbeom Roh, Da Yeon Cheong et al. "Colorimetric Nanoparticle-Embedded Hydrogels for a Biosensing Platform". Nanomaterials 12, n.º 7 (30 de marzo de 2022): 1150. http://dx.doi.org/10.3390/nano12071150.

Texto completo
Resumen
Hydrogels containing colorimetric nanoparticles have been used for ion sensing, glucose detection, and microbial metabolite analyses. In particular, the rapid chemical reaction owing to both the hydrogel form of water retention and the sensitive color change of nanoparticles enables the rapid detection of target substances. Despite this advantage, the poor dispersibility of nanoparticles and the mechanical strength of nanoparticle–hydrogel complexes have limited their application. In this study, we demonstrate a milliliter agarose gel containing homogeneously synthesized polyaniline nanoparticles (PAni-NPs), referred to as PAni-NP–hydrogel complexes (PNHCs). To fabricate the optimal PNHC, we tested various pH solvents based on distilled water and phosphate-buffered saline and studied the colorimetric response of the PNHC with thickness. The colorimetric response of the prepared PNHC to the changes in the pH of the solution demonstrated excellent linearity, suggesting the possibility of using PNHC as a pH sensor. In addition, it was verified that the PNHC could detect minute pH changes caused by the cancer cell metabolites without cytotoxicity. Furthermore, the PNHC can be stably maintained outside water for approximately 12 h without deformation, indicating that it can be used as a disposable patch-type wearable biosensing platform.
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Sreekanth, Kandammathe Valiyaveedu, Yunus Alapan, Mohamed ElKabbash, Efe Ilker, Michael Hinczewski, Umut A. Gurkan, Antonio De Luca y Giuseppe Strangi. "Extreme sensitivity biosensing platform based on hyperbolic metamaterials". Nature Materials 15, n.º 6 (28 de marzo de 2016): 621–27. http://dx.doi.org/10.1038/nmat4609.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Baikova, Tatiana V., Pavel A. Danilov, Sergey A. Gonchukov, Valery M. Yermachenko, Andrey A. Ionin, Roman A. Khmelnitskii, Sergey I. Kudryashov et al. "Diffraction microgratings as a novel optical biosensing platform". Laser Physics Letters 13, n.º 7 (27 de mayo de 2016): 075602. http://dx.doi.org/10.1088/1612-2011/13/7/075602.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Hu, Peng, Lei Han, Chengzhou Zhu y Shao Jun Dong. "Nanoreactors: a novel biosensing platform for protein assay". Chemical Communications 49, n.º 17 (2013): 1705. http://dx.doi.org/10.1039/c2cc37734a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Fallatah, Ahmad y Sonal Padalkar. "Ceria Nanostructures as Biosensing Platform for Glucose Sensing". ECS Transactions 80, n.º 10 (25 de octubre de 2017): 1269–75. http://dx.doi.org/10.1149/08010.1269ecst.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Patel, Manoj K., Md Azahar Ali, Ved V. Agrawal, Z. A. Ansari, S. G. Ansari y B. D. Malhotra. "Nanostructured magnesium oxide biosensing platform for cholera detection". Applied Physics Letters 102, n.º 14 (8 de abril de 2013): 144106. http://dx.doi.org/10.1063/1.4800933.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Jeykumari, D. R. Shobha y S. Sriman Narayanan. "Bienzyme Based Biosensing Platform Using Functionalized Carbon Nanotubes". Journal of Nanoscience and Nanotechnology 9, n.º 9 (1 de septiembre de 2009): 5411–16. http://dx.doi.org/10.1166/jnn.2009.1169.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Voccia, Diego, Francesca Bettazzi, Serena Laschi, Cristina Gellini, Giangaetano Pietraperzia, Luigi Falciola, Valentina Pifferi et al. "Nanostructured Photoelectrochemical Biosensing Platform for Cancer Biomarker Detection". Procedia Technology 27 (2017): 144–45. http://dx.doi.org/10.1016/j.protcy.2017.04.063.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Tong, Jinguang, Li Jiang, Huifang Chen, Yiqin Wang, Ken-Tye Yong, Erik Forsberg y Sailing He. "Graphene–bimetal plasmonic platform for ultra-sensitive biosensing". Optics Communications 410 (marzo de 2018): 817–23. http://dx.doi.org/10.1016/j.optcom.2017.11.039.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Xu, Tailin, Wanxin Shi, Jinrong Huang, Yongchao Song, Feilong Zhang, Li-Ping Xu, Xueji Zhang y Shutao Wang. "Superwettable Microchips as a Platform toward Microgravity Biosensing". ACS Nano 11, n.º 1 (22 de diciembre de 2016): 621–26. http://dx.doi.org/10.1021/acsnano.6b06896.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Selnihhin, Denis, Steffen Møller Sparvath, Søren Preus, Victoria Birkedal y Ebbe Sloth Andersen. "Multifluorophore DNA Origami Beacon as a Biosensing Platform". ACS Nano 12, n.º 6 (15 de mayo de 2018): 5699–708. http://dx.doi.org/10.1021/acsnano.8b01510.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Xu, Wendao, Lijuan Xie, Jianfei Zhu, Longhua Tang, Ranjan Singh, Chen Wang, Yungui Ma, Hou-Tong Chen y Yibin Ying. "Terahertz biosensing with a graphene-metamaterial heterostructure platform". Carbon 141 (enero de 2019): 247–52. http://dx.doi.org/10.1016/j.carbon.2018.09.050.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Vengasandra, Srikanth, Yuankun Cai, David Grewell, Joseph Shinar y Ruth Shinar. "Polypropylene CD-organic light-emitting diode biosensing platform". Lab on a Chip 10, n.º 8 (2010): 1051. http://dx.doi.org/10.1039/b923689a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Zhang, Xiaowei, Jing Li, Chaogui Chen, Baohua Lou, Lingling Zhang y Erkang Wang. "A self-powered microfluidic origami electrochemiluminescence biosensing platform". Chemical Communications 49, n.º 37 (2013): 3866. http://dx.doi.org/10.1039/c3cc40905h.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Dutta, Sibasish, Koushik Saikia y Pabitra Nath. "Smartphone based LSPR sensing platform for bio-conjugation detection and quantification". RSC Advances 6, n.º 26 (2016): 21871–80. http://dx.doi.org/10.1039/c6ra01113f.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Pai, Alex, Aroutin Khachaturian, Stephen Chapman, Alexander Hu, Hua Wang y Ali Hajimiri. "A handheld magnetic sensing platform for antigen and nucleic acid detection". Analyst 139, n.º 6 (2014): 1403–11. http://dx.doi.org/10.1039/c3an01947k.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Avila-Huerta, Mariana D., Edwin J. Ortiz-Riaño, Diana L. Mancera-Zapata y Eden Morales-Narváez. "Real-Time Pathogen Determination by Optical Biosensing Based on Graphene Oxide". Proceedings 60, n.º 1 (2 de noviembre de 2020): 59. http://dx.doi.org/10.3390/iecb2020-07016.

Texto completo
Resumen
Pathogenic bacterial contamination in food is a public health concern. It represents a health and safety consumer risk that could cause several diseases and even death. Currently, the food industry uses culture-based assays to determine the presence of pathogens as a gold standard method. Although this method is highly accurate, it is often time-consuming and expensive. In this regard, the development of biosensing platforms results as an alternative for the reduction of time and cost of pathogenic bacteria detection in food. In this work, we report the development of a single-step bacterial detection platform based on graphene oxide. Non-radiative energy transfer between graphene oxide coated microplates (GOMs) and photoluminescence bioprobes (PLBs) is presented in absence of the target analyte, but in presence of analyte, PLBs exhibit strong photoluminescence due to the distance between GOMs and PLBs. These PLBs are based on quantum dot (Qds)-antibody (Ab) complexes, thereby resulting as a biorecognition and interrogation element. Escherichia coli was used as model analyte. In optimal conditions, the bacterial detection platform reached a limit of detection around 2 CFU mL−1 in 30 min, enabling a fast and sensitive alternative for bacterial detection. The biosensing platform was also used to test food industry samples achieving a qualitative response, that allows determining the presence of E. coli during the first 30 min of the assay. This biosensing strategy potentially offers a low-cost and quick option for the food industry to assure the quality of the product and consumer safety.
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Dong, Yuanyuan, Chenxing Xu y Lei Zhang. "Construction of 3D Bi/ZnSnO3 hollow microspheres for label-free highly selective photoelectrochemical recognition of norepinephrine". Nanoscale 13, n.º 20 (2021): 9270–79. http://dx.doi.org/10.1039/d1nr00792k.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Li, Jingjing, Long Jiang, Xu Wang, Zhixue Zhu, Qingxin Zhang, Su Liu, Yu Wang y Jiadong Huang. "Ultrasensitive electrochemical aptasensor based on palindromic sequence mediated bidirectional SDA and a DNAzyme walker for kanamycin detection". New Journal of Chemistry 46, n.º 21 (2022): 10394–401. http://dx.doi.org/10.1039/d2nj01368a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Asefifeyzabadi, Narges, Grace Durocher, Kizito-Tshitoko Tshilenge, Tanimul Alam, Lisa M. Ellerby y Mohtashim H. Shamsi. "PNA microprobe for label-free detection of expanded trinucleotide repeats". RSC Advances 12, n.º 13 (2022): 7757–61. http://dx.doi.org/10.1039/d2ra00230b.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Lee, Sang-Nam, Jin-Ha Choi, Hyeon-Yeol Cho y Jeong-Woo Choi. "Metallic Nanoparticle-Based Optical Cell Chip for Nondestructive Monitoring of Intra/Extracellular Signals". Pharmaceutics 12, n.º 1 (7 de enero de 2020): 50. http://dx.doi.org/10.3390/pharmaceutics12010050.

Texto completo
Resumen
The biosensing platform is noteworthy for high sensitivity and precise detection of target analytes, which are related to the status of cells or specific diseases. The modification of the transducers with metallic nanoparticles (MNPs) has attracted attention owing to excellent features such as improved sensitivity and selectivity. Moreover, the incorporation of MNPs into biosensing systems may increase the speed and the capability of the biosensors. In this review, we introduce the current progress of the developed cell-based biosensors, cell chip, based on the unique physiochemical features of MNPs. Mainly, we focus on optical intra/extracellular biosensing methods, including fluorescence, localized surface plasmon resonance (LSPR), and surface-enhanced Raman spectroscopy (SERS) based on the coupling of MNPs. We believe that the topics discussed here are useful and able to provide a guideline in the development of new MNP-based cell chip platforms for pharmaceutical applications such as drug screening and toxicological tests in the near future.
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Cheng, Cheng, Mark H. Harpster y John Oakey. "Convection-driven microfabricated hydrogels for rapid biosensing". Analyst 145, n.º 18 (2020): 5981–88. http://dx.doi.org/10.1039/d0an01069c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Long, Lingfeng, Yun Hu, Le Xie, Fubao Sun, Zhenghong Xu y Jinguang Hu. "Constructing a bacterial cellulose-based bacterial sensor platform by enhancing cell affinity via a surface-exposed carbohydrate binding module". Green Chemistry 23, n.º 23 (2021): 9600–9609. http://dx.doi.org/10.1039/d1gc03097c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Yang, Wen, Jianniao Tian, Lijun Wang, Shui Fu, Hongyun Huang, Yanchun Zhao y Shulin Zhao. "A new label-free fluorescent sensor for human immunodeficiency virus detection based on exonuclease III-assisted quadratic recycling amplification and DNA-scaffolded silver nanoclusters". Analyst 141, n.º 10 (2016): 2998–3003. http://dx.doi.org/10.1039/c6an00184j.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Lee, Kyungyeon, Taehee Yoon, Hee-seon Yang, Sunyeong Cha, Yong-Pil Cheon, Leila Kashefi-Kheyrabadi y Hyo-Il Jung. "All-in-one platform for salivary cotinine detection integrated with a microfluidic channel and an electrochemical biosensor". Lab on a Chip 20, n.º 2 (2020): 320–31. http://dx.doi.org/10.1039/c9lc01024f.

Texto completo
Resumen
An all-in-one platform is presented to basically collect the human saliva and directly deliver it onto an electrochemical biosensing surface. Salivary cotinine is accurately analyzed with the aid of the meticulously developed platform.
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Xi, Sunfan, Luhui Wang, Meng Cheng, Mengyang Hu, Rong Liu y Yafei Dong. "Developing a DNA logic gate nanosensing platform for the detection of acetamiprid". RSC Advances 12, n.º 42 (2022): 27421–30. http://dx.doi.org/10.1039/d2ra04794b.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Zhang, Lei, Cuisong Zhou, Jiaojiao Luo, Yuyin Long, Congmin Wang, Tingting Yu y Dan Xiao. "A polyaniline microtube platform for direct electron transfer of glucose oxidase and biosensing applications". Journal of Materials Chemistry B 3, n.º 6 (2015): 1116–24. http://dx.doi.org/10.1039/c4tb01604a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Hua, Zulin, Qin Qin, Xue Bai, Xin Huang y Qi Zhang. "An electrochemical biosensing platform based on 1-formylpyrene functionalized reduced graphene oxide for sensitive determination of phenol". RSC Advances 6, n.º 30 (2016): 25427–34. http://dx.doi.org/10.1039/c5ra27563f.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Lu, Xianbo, Xue Wang, Jing Jin, Qing Zhang y Jiping Chen. "Electrochemical biosensing platform based on amino acid ionic liquid functionalized graphene for ultrasensitive biosensing applications". Biosensors and Bioelectronics 62 (diciembre de 2014): 134–39. http://dx.doi.org/10.1016/j.bios.2014.06.036.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Zhu, Zhixue, Qianqian Pei, Jingjing Li, Qingxin Zhang, Wanqing Xu, Yu Wang, Su Liu y Jiadong Huang. "Two-stage nicking enzyme signal amplification (NESA)-based biosensing platform for the ultrasensitive electrochemical detection of pathogenic bacteria". Analytical Methods 14, n.º 15 (2022): 1490–97. http://dx.doi.org/10.1039/d1ay02103f.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Byrne, Daragh, Yan Zhao, Peter O'Brien y Colette McDonagh. "Direct spray deposition of silver nanoparticle films for biosensing applications". RSC Advances 5, n.º 77 (2015): 62836–43. http://dx.doi.org/10.1039/c5ra10898e.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Byrne, Daragh y Colette McDonagh. "In situ generation of plasmonic cavities for high sensitivity fluorophore and biomolecule detection". Nanoscale 10, n.º 39 (2018): 18555–64. http://dx.doi.org/10.1039/c8nr04764b.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Lou, Jing, Zhaoyin Wang, Xiao Wang, Jianchun Bao, Wenwen Tu y Zhihui Dai. "Highly sensitive “signal-on” electrochemiluminescent biosensor for the detection of DNA based on dual quenching and strand displacement reaction". Chemical Communications 51, n.º 78 (2015): 14578–81. http://dx.doi.org/10.1039/c5cc06156c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Manna, Bhaskar y C. Retna Raj. "Covalent functionalization and electrochemical tuning of reduced graphene oxide for the bioelectrocatalytic sensing of serum lactate". Journal of Materials Chemistry B 4, n.º 26 (2016): 4585–93. http://dx.doi.org/10.1039/c6tb00721j.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Alexander Powell, Jeffery, Krishnan Venkatakrishnan y Bo Tan. "A primary SERS-active interconnected Si-nanocore network for biomolecule detection with plasmonic nanosatellites as a secondary boosting mechanism". RSC Advances 7, n.º 53 (2017): 33688–700. http://dx.doi.org/10.1039/c7ra01970j.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Mao, Xiaoxia, Dongsheng Mao, Juanjuan Jiang, Benyue Su, Guifang Chen y Xiaoli Zhu. "A semi-dry chemistry hydrogel-based smart biosensing platform for on-site detection of metal ions". Lab on a Chip 21, n.º 1 (2021): 154–62. http://dx.doi.org/10.1039/d0lc00855a.

Texto completo
Resumen
A semi-dry chemistry-based biosensing platform was developed for detection of metal ions by intelligent stimulus-responsive DNA hydrogel. The platform combines the advantages of liquid (wet) chemistry and solid (dry) chemistry, providing a promising approach for on-site testing.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Bhunia, Subhajit, Nilanjan Dey, Anirban Pradhan y Santanu Bhattacharya. "A conjugated microporous polymer based visual sensing platform for aminoglycoside antibiotics in water". Chemical Communications 54, n.º 54 (2018): 7495–98. http://dx.doi.org/10.1039/c8cc02865f.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Zhao, Jiali, Zhen Tan, Liu Wang, Chunyang Lei y Zhou Nie. "A ligation-driven CRISPR–Cas biosensing platform for non-nucleic acid target detections". Chemical Communications 57, n.º 57 (2021): 7051–54. http://dx.doi.org/10.1039/d1cc02578c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Liu, Jia-Li, Ying Zhuo, Ya-Qin Chai y Ruo Yuan. "BSA stabilized tetraphenylethylene nanocrystals as aggregation-induced enhanced electrochemiluminescence emitters for ultrasensitive microRNA assay". Chemical Communications 55, n.º 67 (2019): 9959–62. http://dx.doi.org/10.1039/c9cc04660g.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía