Índice
Literatura académica sobre el tema "Biomolecular encryption"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Biomolecular encryption".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Biomolecular encryption"
Fischer, T., M. Neebe, T. Juchem y N. A. Hampp. "Biomolecular optical data storage and data encryption". IEEE Transactions on Nanobioscience 2, n.º 1 (marzo de 2003): 1–5. http://dx.doi.org/10.1109/tnb.2003.810163.
Texto completoK, Menaka. "ENHANCING INFORMATION ENCRYPTION WITH BIOMOLECULAR SEQUENCES USING NDES ALGORITHM". International Journal of Advanced Research in Computer Science 8, n.º 9 (30 de septiembre de 2017): 482–85. http://dx.doi.org/10.26483/ijarcs.v8i9.5006.
Texto completoBenyahia, Kadda, Abdelkader Khobzaoui y Soumia Benbakreti. "DNA sequences for robust encryption: a strategy for IoT security enhancement". STUDIES IN ENGINEERING AND EXACT SCIENCES 5, n.º 1 (22 de abril de 2024): 1296–316. http://dx.doi.org/10.54021/seesv5n1-067.
Texto completoAbbasi, Ali Asghar, Mahdi Mazinani y Rahil Hosseini. "Evolutionary-based image encryption using biomolecules and non-coupled map lattice". Optics & Laser Technology 140 (agosto de 2021): 106974. http://dx.doi.org/10.1016/j.optlastec.2021.106974.
Texto completoAbbasi, Ali Asghar, Mahdi Mazinani y Rahil Hosseini. "Evolutionary-based image encryption using biomolecules operators and non-coupled map lattice". Optik 219 (octubre de 2020): 164949. http://dx.doi.org/10.1016/j.ijleo.2020.164949.
Texto completoGao, Rui, Zhuang Cai, Jianbang Wang y Huajie Liu. "Condensed DNA Nanosphere for DNA Origami Cryptography". Chemistry 5, n.º 4 (8 de noviembre de 2023): 2406–17. http://dx.doi.org/10.3390/chemistry5040159.
Texto completoSun, Lining. "(Digital Presentation) Tailored Rare Earth-Doped Nanomaterials Toward Information Storage and Deep Learning Decoding". ECS Meeting Abstracts MA2022-02, n.º 51 (9 de octubre de 2022): 1981. http://dx.doi.org/10.1149/ma2022-02511981mtgabs.
Texto completoZhang, Yinan, Fei Wang, Jie Chao, Mo Xie, Huajie Liu, Muchen Pan, Enzo Kopperger et al. "DNA origami cryptography for secure communication". Nature Communications 10, n.º 1 (29 de noviembre de 2019). http://dx.doi.org/10.1038/s41467-019-13517-3.
Texto completoSheng, Chengju, Xiujuan Gao, Yanjun Ding y Mingming Guo. "Water‐Soluble Luminescent Polymers with Room Temperature Phosphorescence Based on the α‐Amino Acids". Macromolecular Rapid Communications, 15 de mayo de 2024. http://dx.doi.org/10.1002/marc.202400201.
Texto completoLiu, Xin, Yang Xu, Dan Luo, Gang Xu, Neal Xiong y Xiu-Bo Chen. "The secure judgment of graphic similarity against malicious adversaries and its applications". Scientific Reports 13, n.º 1 (21 de marzo de 2023). http://dx.doi.org/10.1038/s41598-023-30741-6.
Texto completoTesis sobre el tema "Biomolecular encryption"
Berton, Chloé. "Sécurité des données stockées sur molécules d’ADN". Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0431.
Texto completoThe volume of digital data produced worldwide every year is increasing exponentially, and current storage solutions are reaching their limits. In this context, data storage on DNA molecules holds great promise. Storing up to 10¹⁸ bytes per gram of DNA for almost no energy consumption, it has a lifespan 100 times longer than hard disks. As this storage technology is still under development, the opportunity presents itself to natively integrate data security mechanisms. This is the aim of this thesis. Our first contribution is a risk analysis of the entire storage chain, which has enabled us to identify vulnerabilities in digital and biological processes, particularly in terms of confidentiality, integrity, availability and traceability. A second contribution is the identification of elementary biological operators for simple manipulations of DNA. Using these operators, we have developed a DNACipher encryption solution that requires biomolecular decryption (DNADecipher) of the molecules before the data can be read correctly. This third contribution, based on enzymes, required the development of a coding algorithm for digital data into DNA sequences, a contribution called DSWE. This algorithm respects the constraints of biological processes (e.g. homopolymers) and our encryption solution. Our final contribution is an experimental validation of our secure storage chain. This is the first proof of concept showing that it is possible to secure this new storage medium using biomolecular manipulations