Tesis sobre el tema "Biométrie faciale"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 26 mejores tesis para su investigación sobre el tema "Biométrie faciale".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Kose, Neslihan. "Leurrage et dissimulation en reconnaissance faciale : analyses et contre attaques". Thesis, Paris, ENST, 2014. http://www.theses.fr/2014ENST0020/document.
Texto completoHuman recognition has become an important topic as the need and investments for security applications grow continuously. Numerous biometric systems exist which utilize various human characteristics. Among all biometrics traits, face recognition is advantageous in terms of accessibility and reliability. In the thesis, two challenges in face recognition are analyzed. The first one is face spoofing. Spoofing in face recognition is explained together with the countermeasure techniques that are proposed for the protection of face recognition systems against spoofing attacks. For this purpose, both 2D photograph and 3D mask attacks are analyzed. The second challenge explored in the thesis is disguise variations, which are due to facial alterations, facial makeup and facial accessories (occlusions). The impact of these disguise variations on face recognition is explored, separately. Then, techniques which are robust against disguise variations are proposed
Kose, Neslihan. "Leurrage et dissimulation en reconnaissance faciale : analyses et contre attaques". Electronic Thesis or Diss., Paris, ENST, 2014. http://www.theses.fr/2014ENST0020.
Texto completoHuman recognition has become an important topic as the need and investments for security applications grow continuously. Numerous biometric systems exist which utilize various human characteristics. Among all biometrics traits, face recognition is advantageous in terms of accessibility and reliability. In the thesis, two challenges in face recognition are analyzed. The first one is face spoofing. Spoofing in face recognition is explained together with the countermeasure techniques that are proposed for the protection of face recognition systems against spoofing attacks. For this purpose, both 2D photograph and 3D mask attacks are analyzed. The second challenge explored in the thesis is disguise variations, which are due to facial alterations, facial makeup and facial accessories (occlusions). The impact of these disguise variations on face recognition is explored, separately. Then, techniques which are robust against disguise variations are proposed
Ballihi, Lahoucine. "Biométrie faciale 3D par apprentissage des caractéristiques géométriques : Application à la reconnaissance des visages et à la classification du genre". Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2012. http://tel.archives-ouvertes.fr/tel-00726299.
Texto completoMallat, Khawla. "Efficient integration of thermal technology in facial image processing through interspectral synthesis". Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS223.
Texto completoThermal imaging technology has significantly evolved during the last couple of decades, mostly thanks to thermal cameras having become more affordable and user friendly. However, and given that the exploration of thermal imagery is reasonably new, only a few public databases are available to the research community. This limitation consequently prevents the impact of deep learning technologies from generating improved and reliable face biometric systems that operate in the thermal spectrum. A possible solution relates to the development of technologies that bridge the gap between visible and thermal spectra. In attempting to respond to this necessity, the research presented in this dissertation aims to explore interspectral synthesis as a direction for efficient and prompt integration of thermal technology in already deployed face biometric systems.As a first contribution, a new database, containing paired visible and thermal face images acquired simultaneously, was collected and made publicly available to foster research in thermal face image processing. Motivated by the need for fast and straightforward integration into existing face recognition systems, a set of contributions consisted in proposing a cross-spectrum face recognition framework based on a novel approach of thermal-to-visible face synthesis in order to estimate the visible face from the thermal input. Contributions consisting in exploring interspectral synthesis from visible to thermal spectrum for facial image processing tasks related to, but different than face recognition, are also presented including facial landmark detection and face biometric spoofing in thermal spectrum
Dantcheva, Antitza. "Biométries faciales douces : méthodes, applications et défis". Phd thesis, Télécom ParisTech, 2011. http://pastel.archives-ouvertes.fr/pastel-00673146.
Texto completoDantcheva, Antitza. "Biométries faciales douces : méthodes, applications et défis". Phd thesis, Paris, Télécom ParisTech, 2011. https://pastel.hal.science/pastel-00673146.
Texto completoThis dissertation studies soft biometrics traits, their applicability in different security and commercial scenarios, as well as related usability aspects. We place the emphasis on human facial soft biometric traits which constitute the set of physical, adhered or behavioral human characteristics that can partially differentiate, classify and identify humans. Such traits, which include characteristics like age, gender, skin and eye color, the presence of glasses, moustache or beard, inherit several advantages such as ease of acquisition, as well as a natural compatibility with how humans perceive their surroundings. Specifically, soft biometric traits are compatible with the human process of classifying and recalling our environment, a process which involves constructions of hierarchical structures of different refined traits. This thesis explores these traits, and their application in soft biometric systems (SBSs), and specifically focuses on how such systems can achieve different goals including database search pruning, human identification, human re–identification and, on a different note, prediction and quantification of facial aesthetics. Our motivation originates from the emerging importance of such applications in our evolving society, as well as from the practicality of such systems. SBSs generally benefit from the non-intrusive nature of acquiring soft biometric traits, and enjoy computational efficiency which in turn allows for fast, enrolment–free and pose–flexible biometric analysis, even in the absence of consent and cooperation by the involved human subjects
Ding, Huaxiong. "Combining 2D facial texture and 3D face morphology for estimating people's soft biometrics and recognizing facial expressions". Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEC061/document.
Texto completoSince soft biometrics traits can provide sufficient evidence to precisely determine the identity of human, there has been increasing attention for face based soft biometrics identification in recent years. Among those face based soft biometrics, gender and ethnicity are both key demographic attributes of human beings and they play a very fundamental and important role in automatic machine based face analysis. Meanwhile, facial expression recognition is another challenge problem in face analysis because of the diversity and hybridity of human expressions among different subjects in different cultures, genders and contexts. This Ph.D thesis work is dedicated to combine 2D facial Texture and 3D face morphology for estimating people’s soft biometrics: gender, ethnicity, etc., and recognizing facial expression. For the gender and ethnicity recognition, we present an effective and efficient approach on this issue by combining both boosted local texture and shape features extracted from 3D face models, in contrast to the existing ones that only depend on either 2D texture or 3D shape of faces. In order to comprehensively represent the difference between different genders or ethnics groups, we propose a novel local descriptor, namely local circular patterns (LCP). LCP improves the widely utilized local binary patterns (LBP) and its variants by replacing the binary quantization with a clustering based one, resulting in higher discriminative power as well as better robustness to noise. Meanwhile, the following Adaboost based feature selection finds the most discriminative gender- and ethnic-related features and assigns them with different weights to highlight their importance in classification, which not only further raises the performance but reduces the time and memory cost as well. Experimental results achieved on the FRGC v2.0 and BU-3DFE data sets clearly demonstrate the advantages of the proposed method. For facial expression recognition, we present a fully automatic multi-modal 2D + 3D feature-based facial expression recognition approach and demonstrate its performance on the BU–3DFE database. Our approach combines multi-order gradientbased local texture and shape descriptors in order to achieve efficiency a nd robustness. First, a large set of fiducial facial landmarks of 2D face images along with their 3D face scans are localized using a novel algorithm namely incremental Parallel Cascade of Linear Regression (iPar–CLR). Then, a novel Histogram of Second Order Gradients (HSOG) based local image descriptor in conjunction with the widely used first-order gradient based SIFT descriptor are employed to describe the local texture around each 2D landmark. Similarly, the local geometry around each 3D landmark is described by two novel local shape descriptors constructed using the first-order and the second-order surface differential geometry quantities, i.e., Histogram of mesh Gradients (meshHOG) and Histogram of mesh Shape index (curvature quantization, meshHOS). Finally, the Support Vector Machine (SVM) based recognition results of all 2D and 3D descriptors are fused at both featurelevel and score-level to further improve the accuracy. Comprehensive experimental results demonstrate that there exist impressive complementary characteristics between the 2D and 3D descriptors. We use the BU–3DFE benchmark to compare our approach to the state-of-the-art ones. Our multi-modal feature-based approach outperforms the others by achieving an average recognition accuracy of 86,32%. Moreover, a good generalization ability is shown on the Bosphorus database
Ruiz, Castillo Fiorela Stephanie. "Implementación de la aplicación “RENIEC Móvil Facial” utilizando autenticación biométrica facial para consultas y trámites de DNI/DNIE en el RENIEC". Bachelor's thesis, Universidad Nacional Mayor de San Marcos, 2018. https://hdl.handle.net/20.500.12672/17750.
Texto completoZhang, Wuming. "Towards non-conventional face recognition : shadow removal and heterogeneous scenario". Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEC030/document.
Texto completoIn recent years, biometrics have received substantial attention due to the evergrowing need for automatic individual authentication. Among various physiological biometric traits, face offers unmatched advantages over the others, such as fingerprints and iris, because it is natural, non-intrusive and easily understandable by humans. Nowadays conventional face recognition techniques have attained quasi-perfect performance in a highly constrained environment wherein poses, illuminations, expressions and other sources of variations are strictly controlled. However these approaches are always confined to restricted application fields because non-ideal imaging environments are frequently encountered in practical cases. To adaptively address these challenges, this dissertation focuses on this unconstrained face recognition problem, where face images exhibit more variability in illumination. Moreover, another major question is how to leverage limited 3D shape information to jointly work with 2D based techniques in a heterogeneous face recognition system. To deal with the problem of varying illuminations, we explicitly build the underlying reflectance model which characterizes interactions between skin surface, lighting source and camera sensor, and elaborate the formation of face color. With this physics-based image formation model involved, an illumination-robust representation, namely Chromaticity Invariant Image (CII), is proposed which can subsequently help reconstruct shadow-free and photo-realistic color face images. Due to the fact that this shadow removal process is achieved in color space, this approach could thus be combined with existing gray-scale level lighting normalization techniques to further improve face recognition performance. The experimental results on two benchmark databases, CMU-PIE and FRGC Ver2.0, demonstrate the generalization ability and robustness of our approach to lighting variations. We further explore the effective and creative use of 3D data in heterogeneous face recognition. In such a scenario, 3D face is merely available in the gallery set and not in the probe set, which one would encounter in real-world applications. Two Convolutional Neural Networks (CNN) are constructed for this purpose. The first CNN is trained to extract discriminative features of 2D/3D face images for direct heterogeneous comparison, while the second CNN combines an encoder-decoder structure, namely U-Net, and Conditional Generative Adversarial Network (CGAN) to reconstruct depth face image from its counterpart in 2D. Specifically, the recovered depth face images can be fed to the first CNN as well for 3D face recognition, leading to a fusion scheme which achieves gains in recognition performance. We have evaluated our approach extensively on the challenging FRGC 2D/3D benchmark database. The proposed method compares favorably to the state-of-the-art and show significant improvement with the fusion scheme
Vizoni, Marcelo Vilela. "Reconhecimento da região ocular para a identificação biométrica de pessoas utilizando aprendizado em profundidade /". Bauru, 2019. http://hdl.handle.net/11449/183489.
Texto completoBanca: Patricia Bellin Ribeiro
Banca: Roberta Spolon
Resumo: Na sociedade atual, a identificação precisa e rápida dos indivíduos é uma necessidade. Devido às crescentes preocupações sobre segurança, a Biometria tem sido proposta para este fim. A região ocular da face, que inclui o olho, as pálpebras, os cílios e as sobrancelhas, é uma das mais recentes modalidades biométricas sendo pesquisadas. Além da alta unicidade desta região da face, sua utilização representa um bom trade-off entre a utilização de toda a região da face e a utilização apenas da textura da íris dos olhos, pois possibilita uma gama maior de distâncias do indivíduo sendo identificado ao sensor. Este trabalho apresenta um novo método de autenticação de pessoas baseado em características oculares profundas, que são extraídas da região ocular da face usando uma CNN (Convolutional Neural Network). Em nosso método, em vez de usar diretamente os características profundas para a autenticação, usamos a diferença entre as características de referência e teste, gerando um vetor diferença. Então, nosso método adota uma estratégia de pares. Em seguida, um classificador SVM (Support Vector Machine) binário é treinado para determinar se um vetor diferença é genuíno ou impostor. O novo método proposto para autenticação de pessoas baseado em características oculares foi avaliado em diferentes bases de dados, contendo toda a face ou apenas a região ocular. Em nossos experimentos, a fusão de características oculares com características faciais obteve melhores resultados do que o uso...
Abstract: In modern society, accurate and quick identification of individuals is a necessity. Due to growing security concerns, Biometrics has been proposed for this purpose. The ocular region of the face, which includes the eye, eyelids, eyelashes and eyebrows, is one of the most recent biometric modalities being investigated. In addition to the high uniqueness of this region of the face, its use represents a good trade-off between the use of the entire face region and using only the texture of the iris of the eyes, since it allows a greater range of distances of the individual being identified to the sensor. This work presents a new method for identity authentication based on ocular deep features, which are extracted from the ocular region of the face by using a very deep CNN (Convolutional Neural Network). In our method, instead of using directly the deep features for the authentication, we use the difference between the probe and reference deep features, creating a difference vector. So, our method adopts a pairwise strategy. Then, a binary SVM (Support Vector Machine) classifier is trained to determine whether a given difference of deep features is genuine or impostor. The proposed new method for identity authentication based on ocular features was evaluated on different databases, containing the entire face or only the ocular region. In our experiments, the fusion of ocular features with facial features obtained better results than the use of features of the whole face when ...
Mestre
Bicalho, Gustavo Carneiro. "Influência das Razões Foto Antropométricas no processo de reconhecimento facial biométrico em norma frontal em imagens digitais". reponame:Repositório Institucional da UnB, 2018. http://repositorio.unb.br/handle/10482/34143.
Texto completoCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).
Reconhecimento facial é uma área de grande interesse para governos e empresas nos dias de hoje, motivando diversas pesquisas na área. Atualmente, a maioria das pesquisas migrou para a utilização de aprendizado de máquina para apresentar soluções para o reconhecimento facial biométrico. As técnicas utilizando marcos faciais eram a principal abordagem para resolver reconhecimentos faciais biométricos e, mesmo com o avanço de novas técnicas, elas ainda são capazes de obter bons resultados em ambientes controlados. Porém, ainda existem problemas em aberto para serem solucionados, como o tratamento de gêmeos, variação de escala e o crescimento da face. Neste trabalho, inicialmente é feita uma pesquisa sobre os principais algoritmos de reconhecimento facial biométrico e, além disso, é proposto um novo método baseado em valores medidos (razões) de marcos faciais cefalométricos, que utilizam o tamanho da iris como um fator de normalização para solucionar a influência dos efeitos escala da face (crescimento facial) e melhorando os valores deEqual Error Rate (EER) para um sistema de reconhecimento facial em cenários específicos em 5%. Também foi feita uma análise para reduzir o número de razões necessárias, reduzindo das inicias 40 razões para 14, enquanto também aumentando o desempenho do método.
Nowadays, facial recognition arouses interest for governments and companies, motivating various reserches in the area. Presently, most researches have used techniques based on machine learning. Facial landmarks techniques were the first and main approach to solve biometric facial recognition and, even with the rise of newer techniques, they are still capable of achieving great results in controlled environments. However, there are still open problems to be solved, such as how to deal with twins, scale variation and the face growth. In this work, initially a research is made over the most important algorithms for biometric facial recognition and also, we propose a new method based on measured values (ratios) from facial cephalometric landmarks, which uses an iris size as a normalization factor to solve the influence of face scale (face growth) effect and improving Equal Error Rates (EER) scores for a facial recognition system in specifics scenarios under 5%. An analysis to reduce the number of ratios needed was also made, reducing from 40 to 14, while also increasing the performance of the method.
Ben, Amor Boulbaba. "Contributions à la modélisation et à la reconnaissance faciales 3D". Ecully, Ecole centrale de Lyon, 2006. http://bibli.ec-lyon.fr/exl-doc/bbenamor.pdf.
Texto completoNowadays, face recognition represent one of the privileged fields of search due to the emergence of the security in many domains. This thesis lies within this scope, and more particularly, in the three-dimensional face recognition. In this work, we are interested to the complementary fields : 3D face modelling and recognition. Whereas modelling task aims at 3D face shape acquisition, recognition task aims at the identification of a probe face model among faces stored in a data base (gallery) or verify his identity. For that, two approaches are studied and implemented : (i) an hybrid approach for facial acquisition based on active vision and geometrical modelling, and (ii) an approach for aligning facial surfaces before computing similarities between 3D models. A new 3D face database is collected within the IV 2 French project in order to make signifiant experiments and evaluations of the developed algorithms
Oueiss, Arlette. "Les rapports tridimensionnels de la base du crâne et du massif maxillo-facial : intérêts en orthodontie et anthropobiologie". Toulouse 3, 2010. http://thesesups.ups-tlse.fr/1295/.
Texto completoThere is an interest in the recent literature about the relationship between cranial base configuration and facial disharmonies or malocclusions, the conclusions of which are contradictory, due to small sample size and very poor methodology to appreciate cranial base shape. The aims of this work are double, the analyze of the cranial base configuration and its relationships with maxillo-facial schemes or malocclusion and the analyze of the maxillo-facial shape and its relationships with malocclusions. 312 patients selected with great pathologies "border line surgery" were used in this study and 3D method was applied, the morphometric geometry processes and a specific 3D maxillo-facial analysis elaborated in Toulouse. The results revealed two interesting finding, the basicranial configuration is not significantly correlated with types of malocclusion, it is remarkably stable, and it does not play any etiologic role in malocclusion appearance, and on the contrary, maxillofacial specific configurations, corresponding to different types of malocclusion, can be described precisely
Matta, Federico. "Video person recognition strategies using head motion and facial appearance". Nice, 2008. http://www.theses.fr/2008NICE4038.
Texto completoDans cette thèse, nous avons principalement exploré l'utilisation de l'information temporelle des séquences vidéo afin de l'appliquer à la reconnaissance de personne et de son genre; en particulier, nous nous concentrons sur l'analyse du mouvement de la tête et du visage ainsi que sur leurs applications potentielles comme éléments d'identification biométriques. De plus, nous cherchons à exploiter la majorité de l'information contenue dans la vidéo pour la reconnaissance automatique; plus précisément, nous regardons la possibilité d'intégrer dans un système biométrique multimodal l'information liée au mouvement de la tête et de la bouche avec celle de l'aspect du visage, et nous étudions l'extraction des nouveaux paramètres spatio-temporels pour la reconnaissance faciale. Nous présentons d'abord un système de reconnaissance de la personne qui exploite l'information relative au mouvement spontané de la tête. Cette information est extraite par le suivi dans le plan image de certains éléments caractéristiques du visage. En particulier, nous détaillons la façon dont dans chaque séquence vidéo le visage est tout d'abord détecté semi-automatiquement, puis le suivi automatique dans le temps de certains éléments caractéristiques en utilisant une approche basée sur l'appariement de bloques (template matching). Ensuite, nous exposons les normalisations géométriques des signaux que nous avons obtenus, le calcul des vecteurs caractéristiques, et la façon dont ils sont utilisés pour estimer les modèles des clients, approximés avec des modèles de mélange de gaussiennes. En fin de compte, nous parvenons à identifier et vérifier l'identité de la personne en appliquant la théorie des probabilités et la règle de décision bayésienne (aussi appelée inférence bayésienne). Nous proposons ensuite une extension multimodale de notre système de reconnaissance de la personne; plus précisément, nous intégrons à travers un cadre probabiliste unifié l'information sur le mouvement de la tête avec celles liées au mouvement de la bouche et à l'aspect du visage. En fait nous développons un nouveau sous-système temporel qui a un espace caractéristique étendu, lequel est enrichi par certains paramètres supplémentaires relatif au mouvement de la bouche; dans le même temps nous introduisons un sous-système spatial complémentaire au précédent, basé sur une extension probabiliste de l'approche Eigenfaces d'origine. Ensuite, une étape d'intégration combine les scores de similarité des deux sous-systèmes parallèles, grâce à une stratégie appropriée de fusion d'opinions. Enfin nous étudions une méthode pratique pour extraire de nouveaux paramètres spatio-temporels liés au visage à partir des séquences vidéo; le but est de distinguer l'identité et le genre de la personne. À cette fin nous développons un système de reconnaissance appelé tomovisages (tomofaces), qui applique la technique de la tomographie vidéo pour résumer en une seule image l'information relative au mouvement et à l'aspect du visage d'une personne. Puis, nous détaillons la projection linéaire à partir de l'espace de l'image en rayons X à un espace caractéristique de dimension réduite, l'estimation des modèles des utilisateurs en calculant les représentants des clusters correspondants, et la reconnaissance de l'identité et du genre par le biais d'un classificateur de plus proche voisin, qui adopte des distances dans le sous-espace
In questa tesi di dottorato esploriamo la possibilità di riconoscere l'identità e il sesso di una persona attraverso l'utilizzo dell'informazione temporale disponibile in alcune sequenze video, in particolare ci concentriamo sull'analisi del movimento della testa e del viso, nonché del loro potenziale utilizzo come identificatiori biometrici. Esaminiamo inoltre la problematica relativa al fatto di sfruttare la maggior parte dell'informazione presente nei video per effettuare il riconoscimento automatico della persona; più precisamente, analizziamo la possibilità di integrare in un sistema biometrico multimodale l'informazione relativa al movimento della testa e della bocca con quella dell'aspetto del viso, e studiamo il calcolo di nuovi parametri spazio-temporali che siano utilizzabili per il riconoscimento stesso. In primo luogo presentiamo un sistema di riconoscimento biometrico della persona che sfrutti l'informazione legata al movimento naturale della testa, il quale è estratto seguendo la posizione nel piano immagine di alcuni elementi caratteristici del viso. In particolare descriviamo come in una sequenza video il volto venga dapprima individuato semiautomaticamente, e come poi alcuni suoi elementi caratteristici siano localizzati nel tempo tramite un algoritmo automatico di messa in corrispondenza di modelli (template matching) permettendo di seguirne la posizione. Spieghiamo quindi le normalizzazioni geometriche dei segnali che abbiamo ricavato, il calcolo dei vettori caratteristici, ed il modo in cui questi sono utilizzati per stimare i modelli degli utilizzatori, approssimandoli tramite delle misture di distribuzioni gaussiane (Gaussian mixture models). Alla fine otteniamo l'identificazione e la verifica dell'identità della persona applicando la teoria delle probabilità e la regola di decisione o inferenza bayesiana. In seguito proponiamo un'estensione multimodale del nostro sistema di riconoscimento della persona; più precisamente, tramite un approccio probabilistico unificato, integriamo l'informazione sul movimento della testa con quelle relative al movimento della bocca e all'aspetto del viso. Infatti sviluppiamo un nuovo sottosistema temporale che possiede uno spazio caratteristico esteso, arricchito di alcuni parametri aggiuntivi legati al movimento della bocca; contemporaneamente, introduciamo un sottosistema spaziale complementare al precedente, basato su un'estensione probabilistica dell'approccio Eigenfaces originale. Alla fine implementiamo uno stadio di fusione, che metta insieme i valori di somiglianza dei due sottosistemi paralleli, attraverso un'appropriata strategia di fusione delle opinioni. Infine investighiamo un metodo pratico per estrarre nuovi parametri spazio-temporali relativi al volto a partire da sequenze video, i quali sono utilizzati per distinguere l'identità ed il sesso della persona. A questo riguardo sviluppiamo un sistema di riconoscimento chiamato tomovolti (tomofaces), il quale utilizza la tecnica della tomografia video per riassumere in una sola immagine l'informazione relativa all'aspetto ed al movimento del volto di una persona. Poi descriviamo la proiezione lineare dallo spazio dell'immagine ai raggi X ad un spazio caratteristico di dimensione ridotta, la stima dei modelli degli utilizzatori attraverso il calcolo dei rappresentanti corrispondenti ad ogni cluster, ed il riconoscimento dell'identità e del genere attraverso un classificatore al vicino più prossimo (nearest neighbour classifier), che adopera le distanze nel sottospazio
Kami, Guilherme José da Costa [UNESP]. "Análise de técnicas de reconhecimento de padrões para a identificação biométrica de usuários em aplicações WEB Utilizando faces a partir de vídeos". Universidade Estadual Paulista (UNESP), 2011. http://hdl.handle.net/11449/98674.
Texto completoAs técnicas para identificação biométrica têm evoluído cada vez mais devido à necessidade que os seres humanos têm de identificar as pessoas em tempo real e de forma precisa para permitir o acesso a determinados recursos, como por exemplo, as aplicações e serviços WEB. O reconhecimento facial é uma técnica biométrica que apresenta várias vantagens em relação às demais, tais como: uso de equipamentos simples e baratos para a obtenção das amostras e a possibilidade de se realizar o reconhecimento em sigilo e à distância. O reconhecimento de faces a partir de vídeo é uma tendência recente na área de Biometria. Esta dissertação tem por objetivo principal comparar diferentes técnicas de reconhecimento facial a partir de vídeo para determinar as que apresentam um melhor compromisso entre tempo de processamento e precisão. Outro objetivo é a incorporação dessas melhores técnicas no sistema de autenticação biométrica em ambientes de E-Learning, proposto em um trabalho anterior. Foi comparado o classificador vizinho mais próximo usando as medidas de distância Euclidiana e Mahalanobis com os seguintes classificadores: Redes Neurais MLP e SOM, K Vizinhos mais Próximos, Classificador Bayesiano, Máquinas de Vetores de Suporte (SVM) e Floresta de Caminhos Ótimos (OPF). Também foi avaliada a técnica de Modelos Ocultos de Markov (HMM). Nos experimentos realizados com a base Recogna Video Database, criada especialmente para uso neste trabalho, e Honda/UCSD Video Database, os classificadores apresentaram os melhores resultados em termos de precisão, com destaque para o classificador SVM da biblioteca SVM Torch. A técnica HMM, que incorpora informações temporais, apresentou resultados melhores do que as funções de distância, em termos de precisão, mas inferiores aos classificadores
The biometric identification techniques have evolved increasingly due to the need that humans have to identify people in real time to allow access to certain resources, such as applications and Web services. Facial recognition is a biometric technique that has several advantages over others. Some of these advantages are the use of simple and cheap equipment to obtain the samples and the ability to perform the recognition in covert mode. The face recognition from video is a recent approach in the area of Biometrics. The work in this dissertation aims at comparing different techniques for face recognition from video in order to find the best rates on processing time and accuracy. Another goal is the incorporation of these techniques in the biometric authentication system for E-Learning environments, proposed in an earlier work. We have compared the nearest neighbor classifier using the Euclidean and Mahalanobis distance measures with some other classifiers, such as neural networks (MLP and SOM), k-nearest neighbor, Bayesian classifier, Support Vector Machines (SVM), and Optimum Path Forest (OPF). We have also evaluated the Hidden Markov Model (HMM) approach, as a way of using the temporal information. In the experiments with Recogna Video Database, created especially for this study, and Honda/UCSD Video Database, the classifiers obtained the best accuracy, especially the SVM classifier from the SVM Torch library. HMM, which takes into account temporal information, presented better performance than the distance metrics, but worse than the classifiers
Huang, Di. "Robust face recognition based on three dimensional data". Phd thesis, Ecole Centrale de Lyon, 2011. http://tel.archives-ouvertes.fr/tel-00693158.
Texto completoKami, Guilherme José da Costa. "Análise de técnicas de reconhecimento de padrões para a identificação biométrica de usuários em aplicações WEB Utilizando faces a partir de vídeos /". São José do Rio Preto : [s.n.], 2011. http://hdl.handle.net/11449/98674.
Texto completoBanca: Hélio Pedrini
Banca: Aledir Silveira Pereira
Resumo: As técnicas para identificação biométrica têm evoluído cada vez mais devido à necessidade que os seres humanos têm de identificar as pessoas em tempo real e de forma precisa para permitir o acesso a determinados recursos, como por exemplo, as aplicações e serviços WEB. O reconhecimento facial é uma técnica biométrica que apresenta várias vantagens em relação às demais, tais como: uso de equipamentos simples e baratos para a obtenção das amostras e a possibilidade de se realizar o reconhecimento em sigilo e à distância. O reconhecimento de faces a partir de vídeo é uma tendência recente na área de Biometria. Esta dissertação tem por objetivo principal comparar diferentes técnicas de reconhecimento facial a partir de vídeo para determinar as que apresentam um melhor compromisso entre tempo de processamento e precisão. Outro objetivo é a incorporação dessas melhores técnicas no sistema de autenticação biométrica em ambientes de E-Learning, proposto em um trabalho anterior. Foi comparado o classificador vizinho mais próximo usando as medidas de distância Euclidiana e Mahalanobis com os seguintes classificadores: Redes Neurais MLP e SOM, K Vizinhos mais Próximos, Classificador Bayesiano, Máquinas de Vetores de Suporte (SVM) e Floresta de Caminhos Ótimos (OPF). Também foi avaliada a técnica de Modelos Ocultos de Markov (HMM). Nos experimentos realizados com a base Recogna Video Database, criada especialmente para uso neste trabalho, e Honda/UCSD Video Database, os classificadores apresentaram os melhores resultados em termos de precisão, com destaque para o classificador SVM da biblioteca SVM Torch. A técnica HMM, que incorpora informações temporais, apresentou resultados melhores do que as funções de distância, em termos de precisão, mas inferiores aos classificadores
Abstract: The biometric identification techniques have evolved increasingly due to the need that humans have to identify people in real time to allow access to certain resources, such as applications and Web services. Facial recognition is a biometric technique that has several advantages over others. Some of these advantages are the use of simple and cheap equipment to obtain the samples and the ability to perform the recognition in covert mode. The face recognition from video is a recent approach in the area of Biometrics. The work in this dissertation aims at comparing different techniques for face recognition from video in order to find the best rates on processing time and accuracy. Another goal is the incorporation of these techniques in the biometric authentication system for E-Learning environments, proposed in an earlier work. We have compared the nearest neighbor classifier using the Euclidean and Mahalanobis distance measures with some other classifiers, such as neural networks (MLP and SOM), k-nearest neighbor, Bayesian classifier, Support Vector Machines (SVM), and Optimum Path Forest (OPF). We have also evaluated the Hidden Markov Model (HMM) approach, as a way of using the temporal information. In the experiments with Recogna Video Database, created especially for this study, and Honda/UCSD Video Database, the classifiers obtained the best accuracy, especially the SVM classifier from the SVM Torch library. HMM, which takes into account temporal information, presented better performance than the distance metrics, but worse than the classifiers
Mestre
Alashkar, Taleb. "3D dynamic facial sequences analysis for face recognition and emotion detection". Thesis, Lille 1, 2015. http://www.theses.fr/2015LIL10109/document.
Texto completoIn this thesis, we have investigated the problems of identity recognition and emotion detection from facial 3D shapes animations (called 4D faces). In particular, we have studied the role of facial (shapes) dynamics in revealing the human identity and their exhibited spontaneous emotion. To this end, we have adopted a comprehensive geometric framework for the purpose of analyzing 3D faces and their dynamics across time. That is, a sequence of 3D faces is first split to an indexed collection of short-term sub-sequences that are represented as matrix (subspace) which define a special matrix manifold called, Grassmann manifold (set of k-dimensional linear subspaces). The geometry of the underlying space is used to effectively compare the 3D sub-sequences, compute statistical summaries (e.g. sample mean, etc.) and quantify densely the divergence between subspaces. Two different representations have been proposed to address the problems of face recognition and emotion detection. They are respectively (1) a dictionary (of subspaces) representation associated to Dictionary Learning and Sparse Coding techniques and (2) a time-parameterized curve (trajectory) representation on the underlying space associated with the Structured-Output SVM classifier for early emotion detection. Experimental evaluations conducted on publicly available BU-4DFE, BU4D-Spontaneous and Cam3D Kinect datasets illustrate the effectiveness of these representations and the algorithmic solutions for identity recognition and emotion detection proposed in this thesis
Marinho, Adriano da Silva. "Uma nova versão de um sistema de detecção e reconhecimento de face utilizando a Transformada Cosseno Discreta". Universidade Federal da Paraíba, 2012. http://tede.biblioteca.ufpb.br:8080/handle/tede/6088.
Texto completoCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
Reliable identification systems have become key components in many applications that provide services to authenticated users. Since traditional authentication methods (such as using passwords or smartcards) can be manipulated in order to bypass the systems, biometric authentication methods have been receiving more attention in recent years. One of the biometric traits is the face. The problem of recognizing faces in video and photo still is an object of research, since there are many factors that influence the detection and recognition, such as lighting, position of the face, the background image, different facial expressions, etc. One can perform face recognition using Discrete Cosine Transform (DCT). In order to adjust a face recognition system to uncontrolled environments, two improvements for it were developed in this work: a image normalization module with respect to rotation and scale, and a change in the feature extraction module through the insertion of a non-ideal low-pass filter. The system and its modifications were tested on the following face databases: UFPB, ORL, Yale, and VSoft GTAV, developed specially for the job. Tests showed the efficiency of the image normalization module, but the system still is not adequate for every environment.
Sistemas de identificação confiáveis tornaram-se componentes chaves de várias aplicações que disponibilizam serviços para usuários autenticados. Uma vez que métodos de autenticação tradicionais (como os que utilizam senhas ou smartcards) podem ser manipulados com o objetivo de burlar os sistemas, métodos de autenticação biométrica vêm recebendo mais atenção nos últimos anos. Um dos traços biométricos é a face. O problema do reconhecimento de faces em vídeo e foto é objeto de pesquisa, uma vez que existem muitos fatores que influenciam na detecção e no reconhecimento, tais como: iluminação, posição da face, imagem ao fundo, diferentes expressões faciais, etc. É possível realizar reconhecimento facial utilizando a Transformada Cosseno Discreta (DCT). Com o intuito de adequar um Sistema de Detecção e Reconhecimento de Faces a ambientes não controlados, neste trabalho foram desenvolvidas duas melhorias para ele: um módulo normalizador de imagens em relação à rotação e à escala e uma modificação na etapa de seleção de atributos, por meio da inserção de um filtro passa-baixas não ideal. O sistema e suas modificações foram testados nos bancos de faces UFPB, ORL, Yale, GTAV e Vsoft, desenvolvido especialmente para o trabalho. Os testes mostraram a eficácia do módulo de normalização da imagem, mas ainda assim o sistema não é adequado para qualquer ambiente.
Farazdaghi, Elham. "Facial ageing and rejuvenation modeling including lifestyle behaviours, using biometrics-based approaches". Thesis, Paris Est, 2017. http://www.theses.fr/2017PESC1236/document.
Texto completoThe main focus of this thesis is to model the evolution trajectory of human face from infancy to senility using the biometrics facial features.The manifestation of facial changes caused by ageing depends on different factors such as genetic, ethnicity and lifestyle. Nevertheless, individuals in the same age group share some facial similarities. These resemblances can be employed to approximate the facial appearance of an individual in the bygone or the forthcoming years.Unlike numerous studies dealing with predictive face ageing models, for the first time, this thesis proposes the first Backward Facial Ageing Model aiming at digitally rejuvenate an adult face appearance down to its early childhood. We also present the Forward Facial Ageing Model to predict the adult face appearance in its future by taking into account the naturalageing trajectory. The main purpose of Forward Facial Ageing Model is to have a base model for the supplementary ageing models such as behavioural models.In this thesis for the first time in face ageing studies, the effects of different lifestyle behaviours are integrated into the facial ageing models. The Behavioural Facial Ageing Models predict the feature of a young face in case of having the high-risk lifestyle habits. The main attempt of these models is to illustrate the adverse effects of unsafe lifestyle behaviourson the senility of the face, aiming to prevent the youth from becoming involved in these habits. The Facial Ageing Modeling Database, contains over 1600 facial images, is collected to construct the models and 30 Face Templates for the purpose of the face ageing studies.Besides, the Face Time-Machine Database from 120 subjects is created and published to testand evaluate the results. For the proposed approach face contour and different components are modified non-linearly based on an estimated geometrical model related to the trajectory of growth or ageing. Moreover, the face texture is adapted by mapping a Face Template to the estimated geometrical model. Then, the effects of each lifestyle habit are set up to the primal predictive model.The evaluations of the results indicate that the proposed models are remarkably accurate to estimate the correct face appearance of an individual in the target age. While the simulated facial images are realistic and have the appearance, geometrical and textural characteristics of the target age, the personal identity and details of the input face images are preserved
Martins, Samuel Botter 1990. "A fast and robust negative mining approach for user enrollment in face recognition systems = Uma abordagem eficiente e robusta de mineração de negativos para cadastramento de novos usuários em sistemas de reconhecimento facial". [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/275553.
Texto completoDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação
Made available in DSpace on 2018-08-27T14:41:07Z (GMT). No. of bitstreams: 1 Martins_SamuelBotter_M.pdf: 4782261 bytes, checksum: 63cd58756e3fe70ffe625d42974b1a78 (MD5) Previous issue date: 2015
Resumo: Sistemas automáticos de reconhecimento de faces tem atraído a atenção da indústria e da academia, devido à gama de possíveis aplicações, tais como vigilância, controle de acesso, etc. O recente progresso em tais sistemas motiva o uso de técnicas de aprendizado em profundidade e classificadores específicos para cada usuário em cenários de operação não-controlado, que apresentam variações consideráveis em pose, iluminação, etc. Sistemas automáticos de reconhecimento de faces possibilitam construir bases de imagens anotadas por meio do processo de cadastramento de novos usuários. Porém, à medida que as bases de dados crescem, torna-se crucial reduzir o número de amostras negativas usadas para treinar classificadores específicos para cada usuário, devido às limitações de processamento e tempo de resposta. Tal processo de aprendizado discriminativo durante o cadastramento de novos indivíduos tem implicações no projeto de sistemas de reconhecimento de faces. Apesar deste processo poder aumentar o desempenho do reconhecimento, ele também pode afetar a velocidade do cadastramento, prejudicando, assim, a experiência do usuário. Neste cenário, é importante selecionar as amostras mais informativas buscando maximizar o desempenho do classificador. Este trabalho resolve tal problema propondo um método de aprendizado discriminativo durante o cadastramento de usuários com o objetivo de não afetar a velocidade e a confiabilidade do processo. Nossa solução combina representações de alta dimensão com um algoritmo que rapidamente minera imagens faciais negativas de um conjunto de minerção grande para assim construir um classificador específico para cada usuário, baseado em máquinas de vetores de suporte. O algoritmo mostrou ser robusto em construir pequenos e eficazes conjuntos de treinamento com as amostras negativas mais informativas para cada indivíduo. Avaliamos nosso método em duas bases contendo imagens de faces obtidas no cenário de operação não-controlado, chamadas PubFig83 e Mobio, e mostramos que nossa abordagem é capaz de alcançar um desempenho superior em tempos interativos, quando comparada com outras cinco abordagens consideradas. Os resultados indicam que o nosso método tem potencial para ser explorado pela indústria com mínimo impacto na experiência do usuário. Além disso, o algoritmo é independente de aplicação, podendo ser uma contribuição relevante para sistemas biométricos que visam manter a robustez à medida que o número de usuários aumenta
Abstract: Automatic face recognition has attracted considerable attention from the industry and academy due to its wide range of applications, such as video surveillance, access control, online transactions, suspect identification, etc. The recent progress in face recognition systems motivates the use of deep learning techniques and user-specific face representation and classification models for unconstrained scenarios, which present considerable variations in pose, face appearance, illumination, etc. Automatic face recognition systems make possible to build annotated face datasets through user enrollment. However, as the face datasets grow, it becomes crucial to reduce the number of negative samples used to train user-specific classifiers, due to processing constraints and responsiveness. Such a discriminative learning process during the enrollment of new individuals has implications in the design of face recognition systems. Even though it might increase recognition performance, it may affect the speed of the enrollment, which in turn may affect the user experience. In this scenario, it is important to select the most informative samples in order to maximize the performance of the classifier. This work addresses this problem by proposing a discriminative learning method during user enrollment with the challenges of not negatively affecting the speed and reliability of the process, and so the user experience. Our solution combines high-dimensional representations from deep learning with an algorithm for rapidly mining negative face images from a large mining set to build an effective classification model based on linear support vector machines for each specific user. The negative mining algorithm has shown to be robust in building small and effective training sets with the most informative negative samples for each given individual. We evaluate our approach on two unconstrained datasets, namely PubFig83 and Mobio, and show that it is able to attain superior performance, within interactive response times, as compared to five other baseline approaches that use the same classification scheme. The results indicate that our approach has potential to be exploited by the industry with minimum impact to the user experience. Moreover, the algorithm is application-independent. Hence, it may be a relevant contribution for biometric systems that aim to maintain robustness as the number of users increases
Mestrado
Ciência da Computação
Mestre em Ciência da Computação
Ninalaya, Martínez Francisco Amadeo y Arangoitia Javier Helder Vela. "El experto biométrico dual, para enfrentar la ineficacia en la cobertura de resolución de casos criminales de identificación policial, de huellas dactilares e imágenes faciales, en la División de Identificación de la Dirección de Criminalística de la PNP". Master's thesis, Pontificia Universidad Católica del Perú, 2020. http://hdl.handle.net/20.500.12404/17927.
Texto completoThe identification of people using biometric technology has revolutionized the structure and workflow of public and private entities, such as the case of forensic police identification services, scientific police offices or crime laboratories, which have evolved from physical methods and mechanical to the automated and digitized systems, making dynamic the services of analysis of evidence of fingerprints and facial images that used to take a long time for comparative and manual searching in a large archive; Today, biometric technology does it in seconds, searching a database that can contain thousands or millions of records. However, the optimization of the criminalistic identification function also brings with it the increase in requirements for the analysis of evidence by justice operators, even more so if there is a high incidence of criminal acts of different types, which requires identification. Of the alleged perpetrator or victim for the continuation of the criminal investigation process, the administration of justice and satisfaction of the demand of citizens who go to the jurisdictional bodies in search of compensation or reparation for their damage. This is the case of the Identification Division of the Criminalistics Directorate of the National Police of Peru (PNP), which began its specialized work with the support of the biometric fingerprint identification technology called AFIS (Automated Fingerprint Identification System) from the year 2012 and the incorporation of the MFI (Morpho Face Identification) facial recognition module since 2015; which has been exceeded its ability to resolve, accumulating pending cases unsolved by identification of fingerprints and facial images. Through the present investigation, it has been possible to identify different variables (causes) that determine the effects that, as a consequence, the ineffectiveness of the resolving capacity of the PNP Criminalistics Identification Directorate, formulating a solution proposal to attend to the most relevant and viable one, identified as the shortage of specialized personnel, with which it is intended to contribute to the solution of the problem or part of it, considering that there are other more complex variables to address, which also influence the problem and are the same reason for research for their care and proposed solution.
Chiachia, Giovani 1981. "Learning person-specific face representations = Aprendendo representações específicas para a face de cada pessoa". [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/275626.
Texto completoTese (doutorado) - Universidade Estadual de Campinas, Instituto de Computação
Made available in DSpace on 2018-08-23T15:41:33Z (GMT). No. of bitstreams: 1 Chiachia_Giovani_D.pdf: 4376963 bytes, checksum: 8f7d18d591f2a5d943313d89416f96d4 (MD5) Previous issue date: 2013
Resumo: Os seres humanos são especialistas natos em reconhecimento de faces, com habilidades que excedem em muito as dos métodos automatizados vigentes, especialmente em cenários não controlados, onde não há a necessidade de colaboração por parte do indivíduo sendo reconhecido. No entanto, uma característica marcante do reconhecimento de face humano é que nós somos substancialmente melhores no reconhecimento de faces familiares, provavelmente porque somos capazes de consolidar uma grande quantidade de experiência prévia com a aparência de certo indivíduo e de fazer uso efetivo dessa experiência para nos ajudar no reconhecimento futuro. De fato, pesquisadores em psicologia têm até mesmo sugeridos que a representação interna que fazemos das faces pode ser parcialmente adaptada ou otimizada para rostos familiares. Enquanto isso, a situação análoga no reconhecimento facial automatizado | onde um grande número de exemplos de treinamento de um indivíduo está disponível | tem sido muito pouco explorada, apesar da crescente relevância dessa abordagem na era das mídias sociais. Inspirados nessas observações, nesta tese propomos uma abordagem em que a representação da face de cada pessoa é explicitamente adaptada e realçada com o intuito de reconhecê-la melhor. Apresentamos uma coleção de métodos de aprendizado que endereça e progressivamente justifica tal abordagem. Ao aprender e operar com representações específicas para face de cada pessoa, nós somos capazes de consistentemente melhorar o poder de reconhecimento dos nossos algoritmos. Em particular, nós obtemos resultados no estado da arte na base de dados PubFig83, uma desafiadora coleção de imagens instituída e tornada pública com o objetivo de promover o estudo do reconhecimento de faces familiares. Nós sugerimos que o aprendizado de representações específicas para face de cada pessoa introduz uma forma intermediária de regularização ao problema de aprendizado, permitindo que os classificadores generalizem melhor através do uso de menos |, porém mais relevantes | características faciais
Abstract: Humans are natural face recognition experts, far outperforming current automated face recognition algorithms, especially in naturalistic, \in-the-wild" settings. However, a striking feature of human face recognition is that we are dramatically better at recognizing highly familiar faces, presumably because we can leverage large amounts of past experience with the appearance of an individual to aid future recognition. Researchers in psychology have even suggested that face representations might be partially tailored or optimized for familiar faces. Meanwhile, the analogous situation in automated face recognition, where a large number of training examples of an individual are available, has been largely underexplored, in spite of the increasing relevance of this setting in the age of social media. Inspired by these observations, we propose to explicitly learn enhanced face representations on a per-individual basis, and we present a collection of methods enabling this approach and progressively justifying our claim. By learning and operating within person-specific representations of faces, we are able to consistently improve performance on both the constrained and the unconstrained face recognition scenarios. In particular, we achieve state-of-the-art performance on the challenging PubFig83 familiar face recognition benchmark. We suggest that such person-specific representations introduce an intermediate form of regularization to the problem, allowing the classifiers to generalize better through the use of fewer | but more relevant | face features
Doutorado
Ciência da Computação
Doutor em Ciência da Computação
Rolim, André Lira. "Um Sistema de Identificação Automática de Faces para Ambientes Virtuais de Aprendizagem". Universidade Federal da Paraíba, 2009. http://tede.biblioteca.ufpb.br:8080/handle/tede/6061.
Texto completoCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
The increased demand for Distance Education and Virtual Learning Environment (VLE) appearance and development are in a scenario where minimizing distances and boosting tracking of students are aspired. However, current VLE don t have the necessary resources to identify the users in the development of their activities. This dissertation presents an online face identification system for use in VLE that has client-server architecture and combines stages of face recognition processing to modules of a mechanism monitor remote users via a webcam. To accomplish the face recognition was used a approach to select coefficients of Discrete Cosine Transform (DCT), which it obtained 97.12% rate of correct answers in a database of images collected without normalization of faces. This work describes, in addition to architectural design, a prototype implemented and presents results obtained and illustrates its operation in an example implementation. Finally, there are a discuss the results and future prospects for the system.
O aumento da demanda pela modalidade de Educação a Distância e o surgimento e aperfeiçoamento dos Ambientes Virtuais de Aprendizagem (AVA) apresentam-se num cenário em que se pretende minimizar distâncias e dinamizar estratégias de monitoramento dos alunos. No entanto, os AVA atuais não dispõem de recursos que identifiquem os usuários durante o desenvolvimento das suas atividades. Esta dissertação apresenta um Sistema de Identificação Automática de Faces (SIAF-EAD) para uso em AVA que possui uma arquitetura cliente-servidor e combina estágios de processamento de reconhecimento facial com módulos de um mecanismo que monitora usuários remotos através de uma webcam. Para realizar o reconhecimento facial foi utilizada uma abordagem de seleção de coeficientes da Transformada Discreta do Cosseno (DCT - Discrete Cosine Transform) que obteve 97,12% de taxa de acertos em um banco de imagens coletadas sem normalização das faces. Este trabalho descreve, além do projeto arquitetural, um protótipo implementado e apresenta resultados obtidos e ilustra seu funcionamento em um exemplo de execução. Por fim, são discutidos os resultados obtidos e perspectivas futuras para o sistema.
Ibarrondo, Luis Alberto. "Privacy-preserving biometric recognition systems with advanced cryptographic techniques". Electronic Thesis or Diss., Sorbonne université, 2023. https://theses.hal.science/tel-04058954.
Texto completoDealing with highly sensitive data, identity management systems must provide adequate privacy protection as they leverage biometrics technology. Wielding Multi-Party Computation (MPC), Homomorphic Encryption (HE) and Functional Encryption (FE), this thesis tackles the design and implementation of practical privacy-preserving biometric systems, from the feature extraction to the matching with enrolled users. This work is consecrated to the design of secure biometric solutions for multiple scenarios, putting special care to balance accuracy and performance with the security guarantees, while improving upon existing works in the domain. We go beyond privacy preservation against semi-honest adversaries by also ensuring correctness facing malicious adversaries. Lastly, we address the leakage of biometric data when revealing the output, a privacy concern often overlooked in the literature. The main contributions of this thesis are: • A new face identification solution built on FE-based private inner product matching mitigating input leakage. • A novel efficient two-party computation protocol, Funshade, to preserve the privacy of biometric thresholded distance metric operations. • An innovative method to perform privacy-preserving biometric identification based on the notion of group testing named Grote. • A new distributed decryption protocol with collaborative masking addressing input leakage, dubbed Colmade. • An honest majority three-party computation protocol, Banners, to perform maliciously secure inference of Binarized Neural Networks. • A HE Python library named Pyfhel, offering a high-level abstraction and low-level functionalities, with applications in teaching
Nunes, Eduardo Carvalho. "Deteção de face falsa com imagem NIR multiespectral e proposta de sistema biométrico facial para controle de presença". Master's thesis, 2018. http://hdl.handle.net/10198/20500.
Texto completoOs sistemas de controle de presenças que realizam a autenticação através de faces carecem de detectores de fraudes para que sejam mais confiáveis. Um sistema capaz de executar essa tarefa automaticamente e corretamente vem trazer uma série de vantagens práticas no domínio da autenticação biométrica. Para atender esta carência, um detector de face falsa é desenvolvido e serve como um pré-passo antes do reconhecimento facial. A abordagem proposta para detecção de face falsa é utilizar câmera infravermelha do espectro NIR e machine learning, referida de deep learning. Neste trabalho foi criado uma base de dados de imagens de faces falsas e reais com auxílio de uma câmera com luz infravermelha NIR. A partir das imagens, foram gerados três datasets para implementação dos modelos de machine learning: Árvore de Decisão, Random Forest, KNN, SVM e MLP. Para a construção do protótipo de reconhecimento facial com detector de face falsa foi utilizado a linguagem Python de programação, as bibliotecas de programação: OpenFace, Scikit- Learn, OpenCV e Flask. A partir destas ferramentas e modelos treinados foi possível ter uma acurácia de 97.50% para detecção de faces falsas e faces reais com o classificador SVM. Para o reconhecimento facial foi definido uma limiar (de 0 a 1) confiável de 0.6 para sistemas que utilizam autenticação no formato 1 para N e limiar 0.2 para formato 1 para 1. Pretende-se que no futuro, o protótipo proposto seja ensaiado numa rede de terminais de marcação de presenças no IPB.
Presence control systems that use perform face authentication need fraud detectors more reliable. A system to able to detect this task automatically and correctly brings a number of practical advantages in the field of biometric authentication. For this problem, an anti-spoofing is developed and serves as a pre-step before face recognition. The proposed approach for false face detection is to use NIR infrared camera and machine learning with deep learning. In this dissertation, it was created a database of fake and real face images with an infrared camera. From the images, three datasets were created to implement the machine learning models: Decision Tree, Random Forest, KNN, SVM and MLP. For the construction of the face recognition prototype with anti-spoofing, the Python programming language, the OpenFace, Scikit-Learn, OpenCV and Flask programming libraries were used. From these trained tools and models it was possible to have an accuracy of 97.50% for detection of false faces and real faces with the SVM classifier. For face recognition, a reliable threshold (from 0 to 1) of 0.6 for systems using 1 to N format authentication and 0.25 to 1 to 1 format threshold is set. It is intended that the proposed prototype be tested on a network of attendance at IPB.