Artículos de revistas sobre el tema "Biomedical materials"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Biomedical materials.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Biomedical materials".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Barenberg, S. A. y E. P. Mueller. "Biomedical Materials". MRS Bulletin 16, n.º 9 (septiembre de 1991): 22–25. http://dx.doi.org/10.1557/s0883769400056001.

Texto completo
Resumen
Biomedical materials is an embryonic interdisciplinary science whose practitioners are scientists, engineers, biochemists, and clinicians who use synthetic polymers, metals, ceramics, inorganic, and natural polymers to fabricate artificial organs, medical devices, drug delivery systems, prosthetics, and packaging systems.The intent of this special issue of the MRS Bulletin is to provide readers with insight into current biomaterials research and product development. This issue is not meant to be either conclusive or definitive, but rather a “sound bite” of the field.For further information, please feel free to contact either the individual authors or the editors of this issue.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Mikos, Antonios G. "Multiphase biomedical materials". Journal of Controlled Release 16, n.º 3 (agosto de 1991): 366–67. http://dx.doi.org/10.1016/0168-3659(91)90016-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Mikos, Antonios G. "Multiphase biomedical materials". Journal of Controlled Release 17, n.º 2 (octubre de 1991): 207. http://dx.doi.org/10.1016/0168-3659(91)90060-q.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Mohammed, Mohsin T., Zahid A. Khan y Arshad N. Siddiquee. "Corrosion in Biomedical Grade Titanium Based Materials: A Review". Indian Journal of Applied Research 3, n.º 9 (1 de octubre de 2011): 206–10. http://dx.doi.org/10.15373/2249555x/sept2013/65.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Helmus, Michael N. "Overview of Biomedical Materials". MRS Bulletin 16, n.º 9 (septiembre de 1991): 33–38. http://dx.doi.org/10.1557/s0883769400056025.

Texto completo
Resumen
Biomedical materials are synthetic polymers, metals, ceramics, inorganics, and natural macromolecules (biopolymers), that are manufactured or processed to be suitable for use in or as medical devices or prostheses. These materials typically come in contact with cells, proteins, tissues, organs, and organ systems. They can be implanted for long-term use, e.g., an arrtificial hip, or for temporary use, e.g., an intravenous catheter. Except in isolated cases when a material is used by itself, such as collagen injections for filling soft tissue defects, biomedical materials are used as a component in a medical device. The form of the material (perhaps a textile) how it interfaces (blood contacting, for instance), and its time of use will determine its required properties. A material's use needs to be viewed in the context of the total device and its interface with the body. One material property alone is unlikely to lead to a successful and durable device, but the failure to address a key property can lead to device failure. Until recently, medical-grade polymers, ceramics, inorganics, and metals were purified versions of commercial-grade materials. A variety of polymers, biopolymers, and inorganics is now being specifically developed for medical applications. Table I summarizes the types of biomedical materials.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

TANAKA, Mototsugu. "Forefront in Biomedical Materials". Journal of the Society of Materials Science, Japan 68, n.º 8 (15 de agosto de 2019): 656–61. http://dx.doi.org/10.2472/jsms.68.656.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

MIZUTANI, Masayoshi, Yuichi OTSUKA y Shoichi KIKUCHI. "Forefront in Biomedical Materials". Journal of the Society of Materials Science, Japan 68, n.º 9 (15 de septiembre de 2019): 723–29. http://dx.doi.org/10.2472/jsms.68.723.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

HISAMORI, Noriyuki, Takuya ISHIMOTO y Takayoshi NAKANO. "Forefront in Biomedical Materials". Journal of the Society of Materials Science, Japan 68, n.º 10 (15 de octubre de 2019): 798–803. http://dx.doi.org/10.2472/jsms.68.798.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

OYA, Kei, Shogo MIYATA y Yusuke MORITA. "Forefront in Biomedical Materials". Journal of the Society of Materials Science, Japan 68, n.º 11 (15 de noviembre de 2019): 865–70. http://dx.doi.org/10.2472/jsms.68.865.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

IKADA, YOSHITO. "Fibers as Biomedical Materials". Sen'i Gakkaishi 47, n.º 3 (1991): P120—P125. http://dx.doi.org/10.2115/fiber.47.p120.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Ning, Chengyun, Lei Zhou y Guoxin Tan. "Fourth-generation biomedical materials". Materials Today 19, n.º 1 (enero de 2016): 2–3. http://dx.doi.org/10.1016/j.mattod.2015.11.005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Vail, N. K., L. D. Swain, W. C. Fox, T. B. Aufdlemorte, G. Lee y J. W. Barlow. "Materials for biomedical applications". Materials & Design 20, n.º 2-3 (junio de 1999): 123–32. http://dx.doi.org/10.1016/s0261-3069(99)00018-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Hench, L. L. "Third-Generation Biomedical Materials". Science 295, n.º 5557 (8 de febrero de 2002): 1014–17. http://dx.doi.org/10.1126/science.1067404.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Lee, In-Seop y Myron Spector. "Biomedical materials and 2013". Biomedical Materials 8, n.º 2 (25 de marzo de 2013): 020201. http://dx.doi.org/10.1088/1748-6041/8/2/020201.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Kutay, Sezer, Teoman Tincer y Nesrin Hasirci. "Polyurethanes as biomedical materials". British Polymer Journal 23, n.º 3 (1990): 267–72. http://dx.doi.org/10.1002/pi.4980230316.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Plachá, Daniela y Josef Jampilek. "Graphenic Materials for Biomedical Applications". Nanomaterials 9, n.º 12 (11 de diciembre de 2019): 1758. http://dx.doi.org/10.3390/nano9121758.

Texto completo
Resumen
Graphene-based nanomaterials have been intensively studied for their properties, modifications, and application potential. Biomedical applications are one of the main directions of research in this field. This review summarizes the research results which were obtained in the last two years (2017–2019), especially those related to drug/gene/protein delivery systems and materials with antimicrobial properties. Due to the large number of studies in the area of carbon nanomaterials, attention here is focused only on 2D structures, i.e. graphene, graphene oxide, and reduced graphene oxide.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Hao, Yan Xia. "Research on Polymeric Biomedical Materials". Applied Mechanics and Materials 484-485 (enero de 2014): 100–104. http://dx.doi.org/10.4028/www.scientific.net/amm.484-485.100.

Texto completo
Resumen
The article are outlined the medicinal use of polymer materials and characteristics and described its preparation method and application for controlled drug release from polymer, polymer drugs, pharmaceutical formulations and packaging polymer materials three aspects. Meanwhile elaborates a novel well dispersed MWCNTs PMAA/MWCNTs nanohybrid hydrogels. The introduction of MWCNTs significantly improved pH-responsive hydrogels and mechanical strength, and which depending on the composition ratio of MWCNTs, particle size and concentration of crosslinker. Study found that hybrid hydrogel swelling rate significantly faster than the pure PMAA hydrogel swelling behavior and this is explained. Compressive stress - strain was found, MWCNTs load transfer heterozygous for improving mechanical properties of the hydrogel network compression plays an important role. MTT cell compatibility evaluation proves that this astute hydrogel biomedical research in particular has potential application value.
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Ma, Jan, Tao Li, Yan Hong Chen, T. Han Lim y F. Y. C. Boey. "Piezoelectric Materials for Biomedical Applications". Key Engineering Materials 334-335 (marzo de 2007): 1117–20. http://dx.doi.org/10.4028/www.scientific.net/kem.334-335.1117.

Texto completo
Resumen
A piezoelectric microactuator for minimally invasive surgery procedures was developed using the piezoelectric tube actuator. The tube was fabricated by electrophoretic deposition of a doped PZT powders on the graphite rod substrate and co-sintering. The obtained tube shows maximum strain 0.045% in 31 mode and coercive field 1.5 kV/mm under static condition. Under dynamic condition, bending and longitudinal vibration modes can be identified from impedance spectrum and simulation. Theoretical analysis indicates that the displacement of the two modes depends on the geometry, material property, driving condition and damping conditions. The developed device uses bending mode to create rotation mechanical motion, and longitudinal mode to produce ultrasonic energy to soften and break up the target into fragments.
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Barud, Hernane S. y Frederico B. De Sousa. "Electrospun Materials for Biomedical Applications". Pharmaceutics 14, n.º 8 (26 de julio de 2022): 1556. http://dx.doi.org/10.3390/pharmaceutics14081556.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Murphy, Andrew F. "Biomedical Materials and Medicine Development". Science Insights Materials and Chemistry 2016, n.º 2016 (16 de enero de 2016): 1–5. http://dx.doi.org/10.15354/simc.16.re012.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Mandal, Biman B., Chitta R. Patra y Subhas C. Kundu. "Biomedical materials research in India". Biomedical Materials 17, n.º 6 (5 de septiembre de 2022): 060201. http://dx.doi.org/10.1088/1748-605x/ac8902.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

HAYASHI, TOSHIO. "Elastic Materials for Biomedical Uses." NIPPON GOMU KYOKAISHI 71, n.º 5 (1998): 243–50. http://dx.doi.org/10.2324/gomu.71.243.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Shi, Donglu y Hongchen Gu. "Nanostructured Materials for Biomedical Applications". Journal of Nanomaterials 2008 (2008): 1–2. http://dx.doi.org/10.1155/2008/529890.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Falde, Eric J., Stefan T. Yohe, Yolonda L. Colson y Mark W. Grinstaff. "Superhydrophobic materials for biomedical applications". Biomaterials 104 (octubre de 2016): 87–103. http://dx.doi.org/10.1016/j.biomaterials.2016.06.050.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Adiga, Shashishekar P., Larry A. Curtiss, Jeffrey W. Elam, Michael J. Pellin, Chun-Che Shih, Chun-Ming Shih, Shing-Jong Lin et al. "Nanoporous materials for biomedical devices". JOM 60, n.º 3 (marzo de 2008): 26–32. http://dx.doi.org/10.1007/s11837-008-0028-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Anderson, James M. "The future of biomedical materials". Journal of Materials Science: Materials in Medicine 17, n.º 11 (noviembre de 2006): 1025–28. http://dx.doi.org/10.1007/s10856-006-0439-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Narayan, Roger J. y Ryan K. Roeder. "Recent advances in biological materials science and biomedical materials". JOM 62, n.º 7 (julio de 2010): 38. http://dx.doi.org/10.1007/s11837-010-0106-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Covolan, Vera L., Roberta Di Ponzio, Federica Chiellini, Elizabeth Grillo Fernandes, Roberto Solaro y Emo Chiellini. "Polyurethane Based Materials for the Production of Biomedical Materials". Macromolecular Symposia 169, n.º 1 (mayo de 2001): 273–82. http://dx.doi.org/10.1002/masy.200451428.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Singh, Sonia. "Keratin - based materials in Biomedical engineering". IOP Conference Series: Materials Science and Engineering 1116, n.º 1 (1 de abril de 2021): 012024. http://dx.doi.org/10.1088/1757-899x/1116/1/012024.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Nedelcu, Ioan-Avram, Anton Ficai, Maria Sonmez, Denisa Ficai, Ovidiu Oprea y Ecaterina Andronescu. "Silver Based Materials for Biomedical Applications". Current Organic Chemistry 18, n.º 2 (31 de enero de 2014): 173–84. http://dx.doi.org/10.2174/13852728113176660141.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Nikolova, Maria P. y Murthy S. Chavali. "Metal Oxide Nanoparticles as Biomedical Materials". Biomimetics 5, n.º 2 (8 de junio de 2020): 27. http://dx.doi.org/10.3390/biomimetics5020027.

Texto completo
Resumen
The development of new nanomaterials with high biomedical performance and low toxicity is essential to obtain more efficient therapy and precise diagnostic tools and devices. Recently, scientists often face issues of balancing between positive therapeutic effects of metal oxide nanoparticles and their toxic side effects. In this review, considering metal oxide nanoparticles as important technological and biomedical materials, the authors provide a comprehensive review of researches on metal oxide nanoparticles, their nanoscale physicochemical properties, defining specific applications in the various fields of nanomedicine. Authors discuss the recent development of metal oxide nanoparticles that were employed as biomedical materials in tissue therapy, immunotherapy, diagnosis, dentistry, regenerative medicine, wound healing and biosensing platforms. Besides, their antimicrobial, antifungal, antiviral properties along with biotoxicology were debated in detail. The significant breakthroughs in the field of nanobiomedicine have emerged in areas and numbers predicting tremendous application potential and enormous market value for metal oxide nanoparticles.
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Li, Mu Qin, Han Song Yang, Li Jie Qu y Ming Hui Zhuang. "Study on Porous Titanium Biomedical Materials". Key Engineering Materials 368-372 (febrero de 2008): 1212–14. http://dx.doi.org/10.4028/www.scientific.net/kem.368-372.1212.

Texto completo
Resumen
The bioactivity of porous titanium is poor. Alkali treatment and heat treatment were used in porous titanium to induce apatite biocoatings on the surface of porous titanium and improve the bioactivity of porous titanium. The results indicate that grass-blade fibre Na2TiO3 and amorphous rutile form on alkali and heat treatment samples and (102) plane Ti disappeared. Octacalcium phosphate (OCP) and Hydroxyapatite (HA) were found on the surface of samples in simulation body fluid (SBF) for 2w. The intensity of OCP and HA increased with time of samples in vivo increased. Ti-OH formed on the surface of the gel was explained by the point of view of negative and positive ion exchange. The mechanism of formation of OCP and HA induced by Na2TiO3 and TiO2 gel was studied.
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Yamashita, Kimihiro. "Biomedical, Biofunctional and Bio-inspired Materials". Journal of the Japan Society of Powder and Powder Metallurgy 52, n.º 5 (2005): 346. http://dx.doi.org/10.2497/jjspm.52.346.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Chen, Xuesi. "Flourishing research in Chinese biomedical materials". Chinese Science Bulletin 66, n.º 18 (1 de junio de 2021): 2215–16. http://dx.doi.org/10.1360/tb-2021-0362.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Kokubo, Tadashi. "Novel Inorganic Materials for Biomedical Applications". Key Engineering Materials 240-242 (mayo de 2003): 523–28. http://dx.doi.org/10.4028/www.scientific.net/kem.240-242.523.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Yu, Lin y Jiandong Ding. "Injectable hydrogels as unique biomedical materials". Chemical Society Reviews 37, n.º 8 (2008): 1473. http://dx.doi.org/10.1039/b713009k.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Leal‑Egaña, Aldo y Thomas Scheibel. "Silk-based materials for biomedical applications". Biotechnology and Applied Biochemistry 55, n.º 3 (12 de marzo de 2010): 155–67. http://dx.doi.org/10.1042/ba20090229.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Mansurov, Z. A., J. M. Jandosov, A. R. Kerimkulova, S. Azat, A. A. Zhubanova, I. E. Digel, I. S. Savistkaya, N. S. Akimbekov y A. S. Kistaubaeva. "Nanostructured Carbon Materials for Biomedical Use". Eurasian Chemico-Technological Journal 15, n.º 3 (13 de mayo de 2013): 209. http://dx.doi.org/10.18321/ectj224.

Texto completo
Resumen
One of the priority trends of carbon nanotechnology is creation of nanocomposite systems. Such carbon nanostructured composites were produced using - raw materials based on the products of agricultural waste, such as grape stones, apricot stones, rice husk. These products have a - wide spectrum of application and can be obtained in large quantities. The Institute of Combustion Problems has carried out the work on synthesis of the nanostructured carbon sorbents for multiple applications including the field of biomedicine. The article presents the data on the synthesis and physico-chemical properties of carbonaceous sorbents using physicochemical methods of investigation: separation and purification of biomolecules; isolation of phytohormone - fusicoccin; adsorbent INGO-1 in the form of an adsorption column for blood detoxification, oral (entero) sorbent - INGO-2; the study of efferent and probiotic properties and sorption activity in regard to the lipopolysaccharide (LPS), new biocomposites - based on carbonized rice husk (CRH) and cellular microorganisms; the use of CRH in wound treatment. A new material for blood detoxication (INGO-1) has been obtained. Adsorption of p-cresyl sulfate and indoxyl sulfate has shown that active carbon adsorbent can remove clinically significant level of p-cresyl sulfate and indoxyl sulfate from human plasma. Enterosorbent INGO-2 possesses high adsorption activity in relation to Gram-negative bacteria and their endotoxins. INGO-2 slows down the growth of conditionally pathogenic microorganisms, without having a negative effect on bifido and lactobacteria. The use of enterosorbent INGO-2 for sorption therapy may provide a solution to a complex problem - detoxication of the digestive tract and normalization of the intestinal micro ecology. The immobilized probiotic called "Riso-lact" was registered at the Ministry of Health of the Republic<br />of Kazakhstan as a biologically active food additive. The developed technology is patented and provides production of the medicine in the form of freeze-dried biomass immobilized in vials.
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Pompe, W., H. Worch, M. Epple, W. Friess, M. Gelinsky, P. Greil, U. Hempel, D. Scharnweber y K. Schulte. "Functionally graded materials for biomedical applications". Materials Science and Engineering: A 362, n.º 1-2 (diciembre de 2003): 40–60. http://dx.doi.org/10.1016/s0921-5093(03)00580-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Qiu, Dong. "Testing polymeric materials for biomedical applications". Polymer Testing 73 (febrero de 2019): A1. http://dx.doi.org/10.1016/j.polymertesting.2018.12.028.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Hammond, Paula T. "Building biomedical materials layer-by-layer". Materials Today 15, n.º 5 (mayo de 2012): 196–206. http://dx.doi.org/10.1016/s1369-7021(12)70090-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Tang, Zhaohui, Chaoliang He, Huayu Tian, Jianxun Ding, Benjamin S. Hsiao, Benjamin Chu y Xuesi Chen. "Polymeric nanostructured materials for biomedical applications". Progress in Polymer Science 60 (septiembre de 2016): 86–128. http://dx.doi.org/10.1016/j.progpolymsci.2016.05.005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Dee, Kay C., David Puleo y Rena Bizios. "Engineering of materials for biomedical applications". Materials Today 3, n.º 1 (2000): 7–10. http://dx.doi.org/10.1016/s1369-7021(00)80003-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Yang, Yuqi, Abdullah Mohamed Asiri, Zhiwen Tang, Dan Du y Yuehe Lin. "Graphene based materials for biomedical applications". Materials Today 16, n.º 10 (octubre de 2013): 365–73. http://dx.doi.org/10.1016/j.mattod.2013.09.004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Li, Yi-Chen Ethan. "Sustainable Biomass Materials for Biomedical Applications". ACS Biomaterials Science & Engineering 5, n.º 5 (22 de marzo de 2019): 2079–92. http://dx.doi.org/10.1021/acsbiomaterials.8b01634.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Sinha, M. K., B. R. Das, D. Bharathi, N. E. Prasad, B. Kishore, P. Raj y K. Kumar. "Electrospun Nanofibrous Materials for Biomedical Textiles". Materials Today: Proceedings 21 (2020): 1818–26. http://dx.doi.org/10.1016/j.matpr.2020.01.236.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Niinomi, Mitsuo. "Recent metallic materials for biomedical applications". Metallurgical and Materials Transactions A 33, n.º 3 (marzo de 2002): 477–86. http://dx.doi.org/10.1007/s11661-002-0109-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Li, Linqing y Kristi L. Kiick. "Resilin-Based Materials for Biomedical Applications". ACS Macro Letters 2, n.º 8 (11 de julio de 2013): 635–40. http://dx.doi.org/10.1021/mz4002194.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Yu, Jicheng, Yuqi Zhang, Xiuli Hu, Grace Wright y Zhen Gu. "Hypoxia-Sensitive Materials for Biomedical Applications". Annals of Biomedical Engineering 44, n.º 6 (29 de febrero de 2016): 1931–45. http://dx.doi.org/10.1007/s10439-016-1578-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Kokubo, Tadashi. "Novel Biomedical Materials Based on Glasses". Materials Science Forum 293 (agosto de 1998): 65–82. http://dx.doi.org/10.4028/www.scientific.net/msf.293.65.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía