Literatura académica sobre el tema "Biomedical materials"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Biomedical materials".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Biomedical materials"
Barenberg, S. A. y E. P. Mueller. "Biomedical Materials". MRS Bulletin 16, n.º 9 (septiembre de 1991): 22–25. http://dx.doi.org/10.1557/s0883769400056001.
Texto completoMikos, Antonios G. "Multiphase biomedical materials". Journal of Controlled Release 16, n.º 3 (agosto de 1991): 366–67. http://dx.doi.org/10.1016/0168-3659(91)90016-7.
Texto completoMikos, Antonios G. "Multiphase biomedical materials". Journal of Controlled Release 17, n.º 2 (octubre de 1991): 207. http://dx.doi.org/10.1016/0168-3659(91)90060-q.
Texto completoHelmus, Michael N. "Overview of Biomedical Materials". MRS Bulletin 16, n.º 9 (septiembre de 1991): 33–38. http://dx.doi.org/10.1557/s0883769400056025.
Texto completoMohammed, Mohsin T., Zahid A. Khan y Arshad N. Siddiquee. "Corrosion in Biomedical Grade Titanium Based Materials: A Review". Indian Journal of Applied Research 3, n.º 9 (1 de octubre de 2011): 206–10. http://dx.doi.org/10.15373/2249555x/sept2013/65.
Texto completoTANAKA, Mototsugu. "Forefront in Biomedical Materials". Journal of the Society of Materials Science, Japan 68, n.º 8 (15 de agosto de 2019): 656–61. http://dx.doi.org/10.2472/jsms.68.656.
Texto completoMIZUTANI, Masayoshi, Yuichi OTSUKA y Shoichi KIKUCHI. "Forefront in Biomedical Materials". Journal of the Society of Materials Science, Japan 68, n.º 9 (15 de septiembre de 2019): 723–29. http://dx.doi.org/10.2472/jsms.68.723.
Texto completoHISAMORI, Noriyuki, Takuya ISHIMOTO y Takayoshi NAKANO. "Forefront in Biomedical Materials". Journal of the Society of Materials Science, Japan 68, n.º 10 (15 de octubre de 2019): 798–803. http://dx.doi.org/10.2472/jsms.68.798.
Texto completoOYA, Kei, Shogo MIYATA y Yusuke MORITA. "Forefront in Biomedical Materials". Journal of the Society of Materials Science, Japan 68, n.º 11 (15 de noviembre de 2019): 865–70. http://dx.doi.org/10.2472/jsms.68.865.
Texto completoIKADA, YOSHITO. "Fibers as Biomedical Materials". Sen'i Gakkaishi 47, n.º 3 (1991): P120—P125. http://dx.doi.org/10.2115/fiber.47.p120.
Texto completoTesis sobre el tema "Biomedical materials"
Cabanach, Xifró Pol. "Zwitterionic materials for biomedical applications". Doctoral thesis, Universitat Ramon Llull, 2021. http://hdl.handle.net/10803/671831.
Texto completoLa respuesta de nuestro cuerpo a los biomateriales supone un gran obstáculo para la efectividad de múltiples terapias basadas en los biomateriales. Accionados por la absorción de biomoléculas en la superficie del material, barreras como el sistema inmune o las superficies mucosas eliminan los materiales del cuerpo, evitando que lleguen a su destino y realicen su función. Los materiales zwitteriónicos han emergido en los últimos años como materiales antiadherentes prometedores para superar las barreras mencionadas. Aunque muchos sistemas utilizan materiales zwitteriónicos como recubrimientos, sus propiedades únicas de superhidrofilicidad i versatilidad química sugieren múltiples beneficios en utilizarlos como material principal. Aquí, dos sistemas basados en materiales zwitteriónicos son presentados. En primer lugar, una plataforma para la liberación de fármaco antiadherente basada en copolímeros de bloque amfifílicos (CBA) es desarrollada. Los CBA zwitteriónicos son sintetizados y optimizados para que se auto-organicen en nanopartículas zwitteriónicas. Las propiedades antiadherentes de estas nanopartículas son probadas, al igual que su potencial para convertirse en un sistema oral de liberación de fármaco. Seguidamente, el sistema se utiliza como portador para fármacos animalarios y anticancerígenos. Las nanopartículas muestran internalización en eritrocitos infectados por Plasmodio, y nanopartículas cargadas con curcumina demuestran su eficacia contra la malaria in vitro. Se observa la absorción oral de polímero y curcumina in vivo utilizando un modelo de ratón, indicando el potencial del sistema para convertirse en una terapia oral contra malaria. Cuando se optimiza el sistema para la terapia contra el cáncer, las nanopartículas cargadas con Paclitaxel exhiben actividad anticancerígena en modelos in vitro de células cancerosas. En segundo lugar, microrobots zwitteriónicos no-inmunológicos que pueden evitar el reconocimiento por parte del sistema inmune son introducidos. Se desarrolla una fotoresisténcia zwitteriónica para la microimpresión de microrobots zwitteriónicos a través de la polimerización de dos fotones con una amplia funcionalización: propiedades mecánicas variables, anti-bioadhesión i propiedades no-inmunogénicas, funcionalización para la actuación magnética, encapsulación de biomoléculas i modificación superficial para la liberación de fármaco. Los robots invisibles evitan que los macrófagos del sistema inmune innato los detecten después de una inspección exhaustiva (de más de 90 horas), hecho que no se ha conseguido hasta la fecha por ningún sistema microrobótico. Estos materiales zwitteriónicos versátiles eliminan uno de los grandes obstáculos en el desarrollo de microrobots biocompatibles, y servirán como una caja de herramientas de materiales no-inmunogénicos para crear robots biomédicos y otros dispositivos para la bioingeniería y para las aplicaciones biomédicas.
Body response to biomaterials suppose a major roadblock for the effectiveness of multiple biomaterial-based therapies. Triggered by unspecific absorption of biomolecules in the material surface, barriers such as immune system or mucosal surfaces clear foreign materials from the body, preventing them to reach their target and perform their function. Zwitterionic materials have emerged in the last years as promising antifouling materials to overcome the mentioned barriers. Although many systems have used zwitterionic materials as coatings, the unique properties of superhydrophilicity and chemical versatility suggest multiple benefits of using zwitterionic polymers as bulk materials. Here, two different systems based on zwitterionic materials are presented. In first place, an antifouling drug delivery platform based on zwitterionic amphiphilic polymers (ABC) is developed. Zwitterionic ABCs are synthetized and optimized to self-assemble in zwitterionic nanoparticles. The antifouling properties of zwitterionic nanoparticles are proved, together with their potential to become an oral drug delivery system. Next, the system is used as a drug carrier for antimalarial and anticancer drugs. Nanoparticles show internalization in Plasmodium infected erythrocytes, and curcumin-loaded nanoparticles prove their antimalarial efficacy in vitro. Oral absorption of polymer and curcumin is also observed in vivo using mice model, indicating the potential of this system to become oral therapy against malaria. When optimizing the system for anticancer therapy, Paclitaxel-loaded nanoparticles exhibit anticancer activity in in vitro cancer cell models. Second, non‐immunogenic stealth zwitterionic microrobots that avoid recognition from immune cells are introduced. Zwitterionic photoresist are developed for the 3D microprinting of zwitterionic hydrogel microrobots through 2-photon polymerization with ample functionalization: tunable mechanical properties, anti-biofouling and non-immunogenic properties, functionalization for magnetic actuation, encapsulation of biomolecules, and surface functionalization for drug delivery. Stealth microrobots avoid detection by macrophage cells of the innate immune system after exhaustive inspection (> 90 h), which has not been achieved in any microrobotic platform to date. These versatile zwitterionic materials eliminate a major roadblock in the development of biocompatible microrobots, and will serve as a toolbox of non-immunogenic materials for medical microrobot and other device technologies for bioengineering and biomedical applications.
Parker, Rachael N. "Protein Engineering for Biomedical Materials". Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/77416.
Texto completoPh. D.
Almeida, José Carlos Martins de. "Hybrid materials for biomedical applications". Doctoral thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/15973.
Texto completoThe increased longevity of humans and the demand for a better quality of life have led to a continuous search for new implant materials. Scientific development coupled with a growing multidisciplinarity between materials science and life sciences has given rise to new approaches such as regenerative medicine and tissue engineering. The search for a material with mechanical properties close to those of human bone produced a new family of hybrid materials that take advantage of the synergy between inorganic silica (SiO4) domains, based on sol-gel bioactive glass compositions, and organic polydimethylsiloxane, PDMS ((CH3)2.SiO2)n, domains. Several studies have shown that hybrid materials based on the system PDMS-SiO2 constitute a promising group of biomaterials with several potential applications from bone tissue regeneration to brain tissue recovery, passing by bioactive coatings and drug delivery systems. The objective of the present work was to prepare hybrid materials for biomedical applications based on the PDMS-SiO2 system and to achieve a better understanding of the relationship among the sol-gel processing conditions, the chemical structures, the microstructure and the macroscopic properties. For that, different characterization techniques were used: Fourier transform infrared spectrometry, liquid and solid state nuclear magnetic resonance techniques, X-ray diffraction, small-angle X-ray scattering, smallangle neutron scattering, surface area analysis by Brunauer–Emmett–Teller method, scanning electron microscopy and transmission electron microscopy. Surface roughness and wettability were analyzed by 3D optical profilometry and by contact angle measurements respectively. Bioactivity was evaluated in vitro by immersion of the materials in Kokubos’s simulated body fluid and posterior surface analysis by different techniques as well as supernatant liquid analysis by inductively coupled plasma spectroscopy. Biocompatibility was assessed using MG63 osteoblastic cells. PDMS-SiO2-CaO materials were first prepared using nitrate as a calcium source. To avoid the presence of nitrate residues in the final product due to its potential toxicity, a heat-treatment step (above 400 °C) is required. In order to enhance the thermal stability of the materials subjected to high temperatures titanium was added to the hybrid system, and a material containing calcium, with no traces of nitrate and the preservation of a significant amount of methyl groups was successfully obtained. The difficulty in eliminating all nitrates from bulk PDMS-SiO2-CaO samples obtained by sol-gel synthesis and subsequent heat-treatment created a new goal which was the search for alternative sources of calcium. New calcium sources were evaluated in order to substitute the nitrate and calcium acetate was chosen due to its good solubility in water. Preparation solgel protocols were tested and homogeneous monolithic samples were obtained. Besides their ability to improve the bioactivity, titanium and zirconium influence the structural and microstructural features of the SiO2-TiO2 and SiO2-ZrO2 binary systems, and also of the PDMS-TiO2 and PDMS-ZrO2 systems. Detailed studies with different sol-gel conditions allowed the understanding of the roles of titanium and zirconium as additives in the PDMS-SiO2 system. It was concluded that titanium and zirconium influence the kinetics of the sol-gel process due to their different alkoxide reactivity leading to hybrid xerogels with dissimilar characteristics and morphologies. Titanium isopropoxide, less reactive than zirconium propoxide, was chosen as source of titanium, used as an additive to the system PDMS-SiO2-CaO. Two different sol-gel preparation routes were followed, using the same base composition and calcium acetate as calcium source. Different microstructures with high hydrophobicit were obtained and both proved to be biocompatible after tested with MG63 osteoblastic cells. Finally, the role of strontium (typically known in bioglasses to promote bone formation and reduce bone resorption) was studied in the PDMS-SiO2-CaOTiO2 hybrid system. A biocompatible material, tested with MG63 osteoblastic cells, was obtained with the ability to release strontium within the values reported as suitable for bone tissue regeneration.
O aumento da longevidade dos seres humanos e a procura de uma melhor qualidade de vida têm conduzido a uma pesquisa contínua de novos materiais para implantes. O desenvolvimento científico, juntamente com uma crescente multidisciplinaridade entre as ciências dos materiais e as ciências da vida deram origem a novas abordagens, como a medicina regenerativa e a engenharia de tecidos. A busca de um material com propriedades mecânicas próximas das do osso humano produziu uma nova família de materiais híbridos que tiram partido da sinergia entre os domínios inorgânicos de sílica (SiO4), com base em composições de vidros bioativos obtidos por sol-gel, e os domínios orgânicos de polidimetilsiloxano, PDMS ((CH3)2.SiO2)n. Vários estudos têm demonstrado que os materiais híbridos baseados no sistema PDMS-SiO2 constituem um grupo de biomateriais promissores com várias aplicações potenciais tais como a regeneração de tecido ósseo e a recuperação do tecido cerebral, passando por revestimentos bioativos e sistemas de libertação controlada de fármacos. O objetivo do presente trabalho foi preparar materiais híbridos para aplicações biomédicas com base no sistema PDMS-SiO2 e contribuir para uma melhor compreensão das relações entre as condições de processamento sol-gel, as estruturas químicas, a microestrutura e as propriedades macroscópicas. Para alcançar tal objetivo, foram usadas diferentes técnicas de caracterização: espectroscopia de infravermelho por transformada de Fourier, ressonância magnética nuclear no estado sólido e no estado líquido, difração de raios-X, dispersão de raios-X de baixo ângulo, dispersão de neutrões de baixo ângulo, análise da área de superfície pelo método de Brunauer–Emmett–Teller, microscopia eletrónica de varrimento e microscopia eletrónica de transmissão. A rugosidade e a molhabilidade das superfícies foram analisadas por perfilometria óptica 3D e por medidas de ângulo de contacto, respectivamente. A bioatividade in vitro foi avaliada através de testes de imersão em plasma sintético e posterior observação da superfície dos materiais e análise do líquido sobrenadante por espectrometria de emissão atômica por plasma acoplado Indutivamente. A biocompatibilidade in vitro foi avaliada usando células osteoblásticas MG63. Materiais do sistema PDMS-SiO2-CaO foram inicialmente preparados usando o nitrato como fonte de cálcio. Para eliminar os resíduos de nitrato no produto final, devido à sua potencial toxicidade, é necessária uma etapa de tratamento térmico (acima dos 400° C). A fim de aumentar a estabilidade térmica dos materiais submetidos a altas temperaturas, foi adicionado titânio ao sistema híbrido. Obteve-se assim um material híbrido contendo cálcio, sem vestígios de nitrato, mantendo-se uma quantidade significativa de grupos metilo. A dificuldade de obter amostras monolíticas de híbridos PDMS-SiO2-CaO por síntese sol-gel e posterior tratamento térmico para eliminação de nitratos, criou um novo objetivo: a procura de fontes alternativas de cálcio. Novas fontes de cálcio foram avaliadas para substituir o nitrato tendo-se escolhido o acetato de cálcio devido à sua boa solubilidade em água. Estabeleceram-se protocolos de preparação por sol-gel a partir dos quais se obtiveram amostras monolíticas homogéneas. Além de melhorar a bioatividade, o titânio e o zircónio influenciam as características estruturais e microestruturais dos sistemas binários SiO2-TiO2 e SiO2-ZrO2, bem como dos sistemas PDMS-TiO2 e PDMS-ZrO2. Neste contexto, foram estudadas diferentes condições experimentais no processo sol-gel, de modo a compreender o papel destes aditivos no sistema SiO2-PDMS. Concluiu-se que o titânio e o zircónio influenciam a cinética do processo sol-gel devido à diferente reatividade dos despectivos alcóxidos, conduzindo à obtenção de xerogéis híbridos com diferentes características e morfologias. O isopropóxido de titânio, menos reativo do que o propóxido de zircónio, foi escolhido como fonte de titânio, usado como aditivo no sistema PDMS-SiO2CaO. Dois procedimentos diferentes de preparação por sol-gel foram seguidos, utilizando a mesma composição de base e o acetato de cálcio como fonte de cálcio. Foram obtidas diferentes microestruturas muito hidrofóbicas e ambas mostraram ser biocompatíveis após serem testadas com células osteoblásticas MG63. Finalmente, foi avaliado o papel do estrôncio (conhecido nos biovidros por favorecer a formação de tecido ósseo e reduzir a sua reabsorção) no sistema híbrido PDMS-CaO-SiO2-TiO2. O material produzido revelou-se biocompatível, através de testes com células osteoblásticas MG63, e com a capacidade de libertar estrôncio dentro dos limites considerados adequados para a reparação do tecido ósseo.
Sanami, Mohammad. "Auxetic materials for biomedical applications". Thesis, University of Bolton, 2015. http://ubir.bolton.ac.uk/785/.
Texto completoCapuccini, Chiara <1979>. "Biomimetic Materials for Biomedical Applications". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2009. http://amsdottorato.unibo.it/1447/1/chiara_capuccini_tesi.pdf.
Texto completoCapuccini, Chiara <1979>. "Biomimetic Materials for Biomedical Applications". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2009. http://amsdottorato.unibo.it/1447/.
Texto completoNiu, Ye. "Microparticulate Hydrogel Materials Towards Biomedical Applications". The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1586094812805108.
Texto completoLiong, Monty. "Biomedical applications of mesostructured silica materials". Diss., Restricted to subscribing institutions, 2009. http://proquest.umi.com/pqdweb?did=1905693461&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Texto completoHercus, Beth Justine. "Modelling T lymphocyte reactions to biomedical materials". Thesis, Queen Mary, University of London, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.423016.
Texto completoLeadley, Robert Stuart. "The surface characterisation of novel biomedical materials". Thesis, University of Nottingham, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259860.
Texto completoLibros sobre el tema "Biomedical materials"
Narayan, Roger, ed. Biomedical Materials. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-49206-9.
Texto completoNarayan, Roger, ed. Biomedical Materials. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-84872-3.
Texto completoM, Williams J., Nichols M. F, Zingg Walter 1924- y Materials Research Society, eds. Biomedical materials. Pittsburgh, Pa: Materials Research Society, 1986.
Buscar texto completoNarayan, Roger. Biomedical Materials. Boston, MA: Springer-Verlag US, 2009.
Buscar texto completoTsuruta, T. y A. Nakajima. Multiphase Biomedical Materials. London: CRC Press, 2021. http://dx.doi.org/10.1201/9780429087592.
Texto completoDolah, Frances M. Van. Biomedical test materials program. Charleston, S.C: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Fisheries Center, Charleston Laboratory, 1990.
Buscar texto completoDolah, Frances M. Van. Biomedical test materials program. Charleston, S.C: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Fisheries Center, Charleston Laboratory, 1990.
Buscar texto completoB, Galloway Sylvia y Southeast Fisheries Center (U.S.). Charleston Laboratory., eds. Biomedical test materials program. Charleston, S.C: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Fisheries Center, Charleston Laboratory, 1989.
Buscar texto completoDolah, Frances M. Van. Biomedical test materials program. Charleston, S.C: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Fisheries Center, Charleston Laboratory, 1990.
Buscar texto completoAl-Ahmed, Amir y Mohammad A. Jafar Mazumder. Materials for biomedical applications. Pfaffikon, Switzerland: Trans Tech Publications Ltd, 2014.
Buscar texto completoCapítulos de libros sobre el tema "Biomedical materials"
Wong, Sharon Y., Mario Cabodi y Catherine M. Klapperich. "Biomedical Microdevices". En Molecular Materials, 271–88. Boca Raton, FL : CRC Press, [2017]: CRC Press, 2017. http://dx.doi.org/10.1201/9781315118697-11.
Texto completoPilliar, Robert M. "Metallic Biomaterials". En Biomedical Materials, 1–47. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49206-9_1.
Texto completoJin, Chunming y Wei Wei. "Wear". En Biomedical Materials, 365–81. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49206-9_10.
Texto completoDoherty, Patrick. "Inflammation, Carcinogenicity, and Hypersensitivity". En Biomedical Materials, 383–97. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49206-9_11.
Texto completoMcKenzie, Janice L., Thomas J. Webster y J. L. McKenzie. "Protein Interactions at Material Surfaces". En Biomedical Materials, 399–422. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49206-9_12.
Texto completoPeters, Kirsten, Ronald E. Unger y C. James Kirkpatrick. "Biocompatibility Testing". En Biomedical Materials, 423–53. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49206-9_13.
Texto completoBhaduri, Sarit B. y Prabaha Sikder. "Biomaterials for Dental Applications". En Biomedical Materials, 455–93. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49206-9_14.
Texto completoWilliams, Rachel L. y David Wong. "Ophthalmic Biomaterials". En Biomedical Materials, 495–515. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49206-9_15.
Texto completoRabiei, Afsaneh. "Hip Prostheses". En Biomedical Materials, 517–35. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49206-9_16.
Texto completoFlynn, Lauren E. y Kimberly A. Woodhouse. "Burn Dressing Biomaterials and Tissue Engineering". En Biomedical Materials, 537–80. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49206-9_17.
Texto completoActas de conferencias sobre el tema "Biomedical materials"
Huttunen, Assi, Petri Laakso, Ville Ellä, Riku Heikkilä y Minna Kellomäki. "Picosecond laser micromachining of biomedical materials". En ICALEO® 2007: 26th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing. Laser Institute of America, 2007. http://dx.doi.org/10.2351/1.5061131.
Texto completoTommasini, Giuseppina, Francesca Di Maria, Mattia Zangoli, Marika Iencharelli, Mariarosaria De Simone, Angela Tino, Maria Moros y Claudia Tortiglione. "Engineered Living Materials for Biomedical Application". En Advanced materials and devices for nanomedicine. València: Fundació Scito, 2022. http://dx.doi.org/10.29363/nanoge.amamed.2022.018.
Texto completoFonash, Stephen J., J. Cuiffi, D. Hayes, W. J. Nam, Sanghoon Bae, Handong Li y A. K. Kalkan. "Nanostructured silicon for biomedical application". En Smart Materials and MEMS, editado por Derek Abbott, Vijay K. Varadan y Karl F. Boehringer. SPIE, 2001. http://dx.doi.org/10.1117/12.418778.
Texto completoLiu, Kuo Kang, Z. H. Du, F. G. Tseng, Min-Chieh Chou, J. Y. Fang y C. C. Chieng. "Electroplated microneedle array for biomedical applications". En Smart Materials and MEMS, editado por Derek Abbott, Vijay K. Varadan y Karl F. Boehringer. SPIE, 2001. http://dx.doi.org/10.1117/12.418774.
Texto completoPopovic, Dejan B. y Richard B. Stein. "Sensors and actuators for biomedical applications". En Smart Structures & Materials '95, editado por William B. Spillman, Jr. SPIE, 1995. http://dx.doi.org/10.1117/12.207666.
Texto completoHattenhorst, Birk, Malte Mallach, Christoph Baer, Thomas Musch, Jan Barowski y Ilona Rolfes. "Dielectric phantom materials for broadband biomedical applications". En 2017 First IEEE MTT-S International Microwave Bio Conference (IMBIOC). IEEE, 2017. http://dx.doi.org/10.1109/imbioc.2017.7965802.
Texto completoDe Cola, Luisa. "Nanoparticles and hybrid materials for biomedical applications". En Advanced materials and devices for nanomedicine. València: Fundació Scito, 2022. http://dx.doi.org/10.29363/nanoge.amamed.2022.004.
Texto completoKirchhof, Johannes, Sonja Unger y Anka Schwuchow. "Fiber lasers: materials, structures and technologies". En Biomedical Optics 2003, editado por Israel Gannot. SPIE, 2003. http://dx.doi.org/10.1117/12.498062.
Texto completoNowak, Michael D. "Combined Mechanical Engineering Materials Lecture and Mechanics of Materials Laboratory: Cross-Disciplinary Teaching". En ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-82008.
Texto completoShahidi, Mehran, Bernhard Pichler y Christian Hellmich. "Micromechanics of Viscous Interfaces in Hydrated (Bio-)Materials". En Biomedical Engineering. Calgary,AB,Canada: ACTAPRESS, 2013. http://dx.doi.org/10.2316/p.2013.791-172.
Texto completoInformes sobre el tema "Biomedical materials"
Chait, Richard y Julius Chang. Roundtable on Biomedical Engineering Materials and Applications. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2001. http://dx.doi.org/10.21236/ada396606.
Texto completoChait, Richard, Teri Thorowgood y Toni Marechaux. Roundtable on Biomedical Engineering Materials and Applications. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2002. http://dx.doi.org/10.21236/ada407761.
Texto completoChait, Richard, Toni Marechaux y Emily A. Meyer. Roundtable on Biomedical Engineering Materials and Application. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2003. http://dx.doi.org/10.21236/ada417008.
Texto completoChait, Richard. Roundtable on Biomedical Engineering Materials and Applications. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2000. http://dx.doi.org/10.21236/ada391253.
Texto completoHall, Dale y John Tesk. Workshop on standards for biomedical materials and devices, June 13-14, 2001. Gaithersburg, MD: National Institute of Standards and Technology, 2001. http://dx.doi.org/10.6028/nist.ir.6791.
Texto completoBrow, R. K., D. R. Tallant y S. V. Crowder. Advanced materials for aerospace and biomedical applications: New glasses for hermetic titanium seals. Office of Scientific and Technical Information (OSTI), noviembre de 1996. http://dx.doi.org/10.2172/510597.
Texto completoMohr, Alicia Hofelich, Jake Carlson, Lizhao Ge, Joel Herndon, Wendy Kozlowski, Jennifer Moore, Jonathan Petters, Shawna Taylor y Cynthia Hudson Vitale. Making Research Data Publicly Accessible: Estimates of Institutional & Researcher Expenses. Association of Research Libraries, febrero de 2024. http://dx.doi.org/10.29242/report.radsexpense2024.
Texto completoStepanyuk, Alla V., Liudmyla P. Mironets, Tetiana M. Olendr, Ivan M. Tsidylo y Oksana B. Stoliar. Methodology of using mobile Internet devices in the process of biology school course studying. [б. в.], julio de 2020. http://dx.doi.org/10.31812/123456789/3887.
Texto completoWilkinson, Annie, Hayley MacGregor, Ian Scoones, Megan Schmidt-Sane, Melissa Leach, Peter Taylor, Santiago Ripoll, Shandana Khan Mohmand, Syed Abbas y Tabitha Hrynick. Pandemic Preparedness for the Real World: Why We Must Invest in Equitable, Ethical and Effective Approaches to Help Prepare for the Next Pandemic. Institute of Development Studies, marzo de 2023. http://dx.doi.org/10.19088/cc.2023.002.
Texto completoImprovements in knowledge of Norplant® implants acceptors: An intervention study in West Sumatra and West Java. Population Council, 1995. http://dx.doi.org/10.31899/rh1995.1020.
Texto completo