Artículos de revistas sobre el tema "Biology - Electron Transfer"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Biology - Electron Transfer.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Biology - Electron Transfer".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Williams, R. J. P. "Electron transfer in biology". Molecular Physics 68, n.º 1 (1 de septiembre de 1989): 1–23. http://dx.doi.org/10.1080/00268978900101931.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Sledow, James N. y Ann L. Umbach. "Plant Mitochondrial Electron Transfer and Molecular Biology". Plant Cell 7, n.º 7 (julio de 1995): 821. http://dx.doi.org/10.2307/3870039.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Agapakis, Christina M. y Pamela A. Silver. "Modular electron transfer circuits for synthetic biology". Bioengineered Bugs 1, n.º 6 (noviembre de 2010): 413–18. http://dx.doi.org/10.4161/bbug.1.6.12462.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Matyushov, Dmitry V. "Protein electron transfer: is biology (thermo)dynamic?" Journal of Physics: Condensed Matter 27, n.º 47 (12 de noviembre de 2015): 473001. http://dx.doi.org/10.1088/0953-8984/27/47/473001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Blankenship, Robert E. "Protein electron transfer". FEBS Letters 398, n.º 2-3 (2 de diciembre de 1996): 339. http://dx.doi.org/10.1016/0014-5793(97)81275-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Moser, Christopher C., Christopher C. Page, Ramy Farid y P. Leslie Dutton. "Biological electron transfer". Journal of Bioenergetics and Biomembranes 27, n.º 3 (junio de 1995): 263–74. http://dx.doi.org/10.1007/bf02110096.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Rivas, Maria Gabriela, Pablo Javier Gonzalez, Felix Martin Ferroni, Alberto Claudio Rizzi y Carlos Brondino. "Studying Electron Transfer Pathways in Oxidoreductases". Science Reviews - from the end of the world 1, n.º 2 (16 de marzo de 2020): 6–23. http://dx.doi.org/10.52712/sciencereviews.v1i2.15.

Texto completo
Resumen
Oxidoreductases containing transition metal ions are widespread in nature and are essential for living organisms. The copper-containing nitrite reductase (NirK) and the molybdenum-containing aldehyde oxidoreductase (Aor) are typical examples of oxidoreductases. Metal ions in these enzymes are present either as mononuclear centers or organized into clusters and accomplish two main roles. One of them is to be the active site where the substrate is converted into product, and the other one is to serve as electron transfer center. Both enzymes transiently bind the substrate and an external electron donor/acceptor in NirK/Aor, respectively, at distinct protein points for them to exchange the electrons involved in the redox reaction. Electron exchange occurs through a specific intra-protein chemical pathway that connects the different enzyme metal cofactors. Based on the two oxidoreductases presented here, we describe how the different actors involved in the intra-protein electron transfer process can be characterized and studied employing molecular biology, spectroscopic, electrochemical, and structural techniques.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Parsons, Roger. "Electron transfer in biology and the solid state". Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 305, n.º 1 (abril de 1991): 166. http://dx.doi.org/10.1016/0022-0728(91)85214-a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Berg, Hermann. "Electron and Proton Transfer in Chemistry and Biology." Bioelectrochemistry and Bioenergetics 32, n.º 1 (septiembre de 1993): 97–98. http://dx.doi.org/10.1016/0302-4598(93)80027-r.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Holtzhauer, Martin y Peter Mohr. "Electron and Proton Transfer in Chemistry and Biology". Zeitschrift für Physikalische Chemie 186, Part_1 (enero de 1994): 119. http://dx.doi.org/10.1524/zpch.1994.186.part_1.119.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Fischer-Hjalmars, I., H. Holmgren y A. Henriksson-Enflo. "Metals in biology: Iron complexes modeling electron transfer". International Journal of Quantum Chemistry 28, S12 (19 de junio de 2009): 57–67. http://dx.doi.org/10.1002/qua.560280708.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Farid, Ramy S., Christopher C. Moser y P. Leslie Dutton. "Electron transfer in proteins". Current Opinion in Structural Biology 3, n.º 2 (abril de 1993): 225–33. http://dx.doi.org/10.1016/s0959-440x(05)80157-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Canters, Gerard W. y Mart van de Kamp. "Protein-mediated electron transfer". Current Opinion in Structural Biology 2, n.º 6 (enero de 1992): 859–69. http://dx.doi.org/10.1016/0959-440x(92)90112-k.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Mathews, F. Scott y Scott White. "Electron transfer proteins/enzymes". Current Opinion in Structural Biology 3, n.º 6 (enero de 1993): 902–11. http://dx.doi.org/10.1016/0959-440x(93)90154-d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

PANG, XIAO-FENG. "THE MECHANISM AND PROPERTIES OF ELECTRON TRANSFER IN THE BIOLOGICAL ORGANISM". International Journal of Modern Physics B 27, n.º 21 (30 de julio de 2013): 1350090. http://dx.doi.org/10.1142/s0217979213500902.

Texto completo
Resumen
The mechanism and properties of electron transfer along protein molecules at finite temperature T ≠ 0 in the life systems are studied using nonlinear theory of bio-energy transport and Green function method, in which the electrons are transferred from donors to acceptors in virtue of the supersound soliton excited by the energy released in ATP hydrolysis. The electron transfer is, in essence, a process of oxidation–reduction reaction. In this study we first give the Hamiltonian and wavefunction of the system and find out the soliton solution of the dynamical equation in the protein molecules with finite temperature, and obtain the dynamical coefficient of the electron transfer. The results show that the speed of the electron transfer is related to the velocity of motion of the soliton, distribution of electrons in the donor and acceptor as well as the interaction strength among them. We finally concluded the changed rule of electric current, arising from the electron transfer, with increasing time. These results are useful in molecular and chemical biology.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Gon, Stéphanie, Marie-Thérèse Giudici-Orticoni, Vincent Méjean y Chantal Iobbi-Nivol. "Electron Transfer and Binding of thec-Type Cytochrome TorC to the TrimethylamineN-Oxide Reductase inEscherichia coli". Journal of Biological Chemistry 276, n.º 15 (30 de octubre de 2000): 11545–51. http://dx.doi.org/10.1074/jbc.m008875200.

Texto completo
Resumen
Reduction of trimethylamineN-oxide (E′0(TMAO/TMA)= +130 mV) inEscherichia coliis carried out by the Tor system, an electron transfer chain encoded by thetorCADoperon and made up of the periplasmic terminal reductase TorA and the membrane-anchored pentahemicc-type cytochrome TorC. Although the role of TorA in the reduction of trimethylamineN-oxide (TMAO) has been clearly established, no direct evidence for TorC involvement has been presented. TorC belongs to the NirT/NapCc-type cytochrome family based on homologies of its N-terminal tetrahemic domain (TorCN) to the cytochromes of this family, but TorC contains a C-terminal extension (TorCC) with an additional heme-binding site. In this study, we show that both domains are required for the anaerobic bacterial growth with TMAO. The intact TorC protein and its two domains, TorCNand TorCC, were produced independently and purified for a biochemical characterization. The reduced form of TorC exhibited visible absorption maxima at 552, 523, and 417 nm. Mediated redox potentiometry of the heme centers of the purified components identified two negative midpoint potentials (−177 and −98 mV) localized in the tetrahemic TorCNand one positive midpoint potential (+120 mV) in the monohemic TorCC. In agreement with these values, thein vitroreconstitution of electron transfer between TorC, TorCN, or TorCCand TorA showed that only TorC and TorCCwere capable of electron transfer to TorA. Surprisingly, interaction studies revealed that only TorC and TorCNstrongly bind TorA. Therefore, TorCCdirectly transfers electrons to TorA, whereas TorCN, which probably receives electrons from the menaquinone pool, is involved in both the electron transfer to TorCCand the binding to TorA.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Bellelli, Andrea, Maurizio Brunori, Peter Brzezinski y Michael T. Wilson. "Photochemically Induced Electron Transfer". Methods 24, n.º 2 (junio de 2001): 139–52. http://dx.doi.org/10.1006/meth.2001.1175.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Anderson, Robert F., Russ Hille, Sujata S. Shinde y Gary Cecchini. "Electron Transfer within Complex II". Journal of Biological Chemistry 280, n.º 39 (5 de agosto de 2005): 33331–37. http://dx.doi.org/10.1074/jbc.m506002200.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Farver, Ole, Scot Wherland, Olga Koroleva, Dmitry S. Loginov y Israel Pecht. "Intramolecular electron transfer in laccases". FEBS Journal 278, n.º 18 (31 de agosto de 2011): 3463–71. http://dx.doi.org/10.1111/j.1742-4658.2011.08268.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Schuergers, N., C. Werlang, C. M. Ajo-Franklin y A. A. Boghossian. "A synthetic biology approach to engineering living photovoltaics". Energy & Environmental Science 10, n.º 5 (2017): 1102–15. http://dx.doi.org/10.1039/c7ee00282c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Nohl, Hans, Werner Jordan y Richard J. Youngman. "Quinones in Biology: Functions in electron transfer and oxygen activation". Advances in Free Radical Biology & Medicine 2, n.º 1 (enero de 1986): 211–79. http://dx.doi.org/10.1016/s8755-9668(86)80030-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Sutcliffe, Michael J., Kamaldeep K. Chohan y Nigel S. Scrutton. "Major Structural Reorganisation Most Likely Accompanies the Transient Formation of a Physiological Electron Transfer Complex". Protein & Peptide Letters 5, n.º 4 (agosto de 1998): 231–36. http://dx.doi.org/10.2174/092986650504221111114610.

Texto completo
Resumen
Abstract: Modelling studies coupled with experimental observations show that the transfer of electrons from trimethylamine dehydrogenase to its electron transferring flavoprotein (ETF) requires a large quaternary change in ETF. These studies describe for the first time how complex and substantial changes in quaternary structure could control interprotein electron transfer reactions, and direct electrons onto specific and ntended redox partners.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Medzihradszky, K. F., S. Guan, D. A. Maltby y A. L. Burlingame. "Sulfopeptide fragmentation in electron-capture and electron-transfer dissociation". Journal of the American Society for Mass Spectrometry 18, n.º 9 (septiembre de 2007): 1617–24. http://dx.doi.org/10.1016/j.jasms.2007.06.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Xu, Wu, Parag Chitnis, Alfia Valieva, Art van der Est, Yulia N. Pushkar, Maciej Krzystyniak, Christian Teutloff et al. "Electron Transfer in Cyanobacterial Photosystem I". Journal of Biological Chemistry 278, n.º 30 (29 de abril de 2003): 27864–75. http://dx.doi.org/10.1074/jbc.m302962200.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Xu, Wu, Parag R. Chitnis, Alfia Valieva, Art van der Est, Klaus Brettel, Mariana Guergova-Kuras, Yulia N. Pushkar et al. "Electron Transfer in Cyanobacterial Photosystem I". Journal of Biological Chemistry 278, n.º 30 (29 de abril de 2003): 27876–87. http://dx.doi.org/10.1074/jbc.m302965200.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Kiger, Laurent y Michael C. Marden. "Electron Transfer Kinetics between Hemoglobin Subunits". Journal of Biological Chemistry 276, n.º 51 (15 de octubre de 2001): 47937–43. http://dx.doi.org/10.1074/jbc.m106807200.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Paquete, Catarina M., Ivo H. Saraiva, Eduardo Calçada y Ricardo O. Louro. "Molecular Basis for Directional Electron Transfer". Journal of Biological Chemistry 285, n.º 14 (20 de enero de 2010): 10370–75. http://dx.doi.org/10.1074/jbc.m109.078337.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Blank, Martin y Lily Soo. "Electromagnetic acceleration of electron transfer reactions". Journal of Cellular Biochemistry 81, n.º 2 (2001): 278–83. http://dx.doi.org/10.1002/1097-4644(20010501)81:2<278::aid-jcb1042>3.0.co;2-f.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Brettel, Klaus y Winfried Leibl. "Electron transfer in photosystem I". Biochimica et Biophysica Acta (BBA) - Bioenergetics 1507, n.º 1-3 (octubre de 2001): 100–114. http://dx.doi.org/10.1016/s0005-2728(01)00202-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Palmer, Graham y Jan Reedijk. "Nonmenclature of electron-transfer proteins". Biochimica et Biophysica Acta (BBA) - Bioenergetics 1060, n.º 3 (noviembre de 1991): vii—xix. http://dx.doi.org/10.1016/s0005-2728(05)80311-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Keltjens, J. T. y C. Drift. "Electron transfer reactions in methanogens". FEMS Microbiology Letters 39, n.º 3 (agosto de 1986): 259–303. http://dx.doi.org/10.1111/j.1574-6968.1986.tb01862.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Murgida, Daniel Horacio. "Modulation of Functional Features in Electron Transferring Metalloproteins". Science Reviews - from the end of the world 1, n.º 2 (16 de marzo de 2020): 45–65. http://dx.doi.org/10.52712/sciencereviews.v1i2.18.

Texto completo
Resumen
Electron transferring metalloproteins are typically implicated in shuttling electrons between energy transduction chains membrane complexes, such as in (aerobic and anaerobic) respiration and photosynthesis, among other functions. The thermodynamic and kinetic electron transfer parameters of the different metalloproteins need to be adjusted in each case to the specific demands, which can be quite diverse among organisms. Notably, biology utilizes very few metals, essentially iron and copper, to cover this broad range of redox needs imposed by biodiversity. Here, I will describe some crucial structural and dynamical characteristics that modulate the electron transfer parameters (and alternative functions) of two prototypical metalloproteins: the iron protein cytochrome c and its redox partner, the CuA center of the terminal respiratory enzyme cytochrome c oxidase. Specifically, I will focus on summarizing results obtained in recent years in my laboratory.
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Rich, P. R. "The osmochemistry of electron-transfer complexes". Bioscience Reports 11, n.º 6 (1 de diciembre de 1991): 539–71. http://dx.doi.org/10.1007/bf01130217.

Texto completo
Resumen
Detailed molecular mechanisms of electron transfer-driven translocation of ions and of the generation of electric fields across biological membranes are beginning to emerge. The ideas inherent in the early formulations of the chemiosmotic hypothesis have provided the framework for this understanding and have also been seminal in promoting many of the experimental approaches which have been successfully used. This article is an attempt to review present understanding of the structures and mechanisms of several osmoenzymes of central importance and to identify and define the underlying features which might be of general relevance to the study of chemiosmotic devices.
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Craven, Galen T. y Abraham Nitzan. "Electron transfer across a thermal gradient". Proceedings of the National Academy of Sciences 113, n.º 34 (22 de julio de 2016): 9421–29. http://dx.doi.org/10.1073/pnas.1609141113.

Texto completo
Resumen
Charge transfer is a fundamental process that underlies a multitude of phenomena in chemistry and biology. Recent advances in observing and manipulating charge and heat transport at the nanoscale, and recently developed techniques for monitoring temperature at high temporal and spatial resolution, imply the need for considering electron transfer across thermal gradients. Here, a theory is developed for the rate of electron transfer and the associated heat transport between donor–acceptor pairs located at sites of different temperatures. To this end, through application of a generalized multidimensional transition state theory, the traditional Arrhenius picture of activation energy as a single point on a free energy surface is replaced with a bithermal property that is derived from statistical weighting over all configurations where the reactant and product states are equienergetic. The flow of energy associated with the electron transfer process is also examined, leading to relations between the rate of heat exchange among the donor and acceptor sites as functions of the temperature difference and the electronic driving bias. In particular, we find that an open electron transfer channel contributes to enhanced heat transport between sites even when they are in electronic equilibrium. The presented results provide a unified theory for charge transport and the associated heat conduction between sites at different temperatures.
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

van Wonderen, Jessica H., Katrin Adamczyk, Xiaojing Wu, Xiuyun Jiang, Samuel E. H. Piper, Christopher R. Hall, Marcus J. Edwards et al. "Nanosecond heme-to-heme electron transfer rates in a multiheme cytochrome nanowire reported by a spectrally unique His/Met-ligated heme". Proceedings of the National Academy of Sciences 118, n.º 39 (23 de septiembre de 2021): e2107939118. http://dx.doi.org/10.1073/pnas.2107939118.

Texto completo
Resumen
Proteins achieve efficient energy storage and conversion through electron transfer along a series of redox cofactors. Multiheme cytochromes are notable examples. These proteins transfer electrons over distance scales of several nanometers to >10 μm and in so doing they couple cellular metabolism with extracellular redox partners including electrodes. Here, we report pump-probe spectroscopy that provides a direct measure of the intrinsic rates of heme–heme electron transfer in this fascinating class of proteins. Our study took advantage of a spectrally unique His/Met-ligated heme introduced at a defined site within the decaheme extracellular MtrC protein of Shewanella oneidensis. We observed rates of heme-to-heme electron transfer on the order of 109 s−1 (3.7 to 4.3 Å edge-to-edge distance), in good agreement with predictions based on density functional and molecular dynamics calculations. These rates are among the highest reported for ground-state electron transfer in biology. Yet, some fall 2 to 3 orders of magnitude below the Moser–Dutton ruler because electron transfer at these short distances is through space and therefore associated with a higher tunneling barrier than the through-protein tunneling scenario that is usual at longer distances. Moreover, we show that the His/Met-ligated heme creates an electron sink that stabilizes the charge separated state on the 100-μs time scale. This feature could be exploited in future designs of multiheme cytochromes as components of versatile photosynthetic biohybrid assemblies.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Murataliev, Marat B., René Feyereisen y F. Ann Walker. "Electron transfer by diflavin reductases". Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1698, n.º 1 (abril de 2004): 1–26. http://dx.doi.org/10.1016/j.bbapap.2003.10.003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Lin, Tzong-Yuan, Tobias Werther, Jae-Hun Jeoung y Holger Dobbek. "Suppression of Electron Transfer to Dioxygen by Charge Transfer and Electron Transfer Complexes in the FAD-dependent Reductase Component of Toluene Dioxygenase". Journal of Biological Chemistry 287, n.º 45 (19 de septiembre de 2012): 38338–46. http://dx.doi.org/10.1074/jbc.m112.374918.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Jeng, Mei-Fen, S. Walter Englander, Kelli Pardue, Jill Short Rogalskyj y George McLendon. "Structural dynamics in an electron–transfer complex". Nature Structural & Molecular Biology 1, n.º 4 (abril de 1994): 234–38. http://dx.doi.org/10.1038/nsb0494-234.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

DiMagno, Theodore J., Zhiyu Wang y James R. Norris. "Initial electron-transfer events in photosynthetic bacteria". Current Opinion in Structural Biology 2, n.º 6 (enero de 1992): 836–42. http://dx.doi.org/10.1016/0959-440x(92)90108-j.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Farooq, Yassar y Gordon C. K. Roberts. "Kinetics of electron transfer between NADPH-cytochrome P450 reductase and cytochrome P450 3A4". Biochemical Journal 432, n.º 3 (25 de noviembre de 2010): 485–94. http://dx.doi.org/10.1042/bj20100744.

Texto completo
Resumen
We have incorporated CYP3A4 (cytochrome P450 3A4) and CPR (NADPH-cytochrome P450 reductase) into liposomes with a high lipid/protein ratio by an improved method. In the purified proteoliposomes, CYP3A4 binds testosterone with Kd (app)=36±6 μM and Hill coefficient=1.5±0.3, and 75±4% of the CYP3A4 can be reduced by NADPH in the presence of testosterone. Transfer of the first electron from CPR to CYP3A4 was measured by stopped-flow, trapping the reduced CYP3A4 as its Fe(II)–CO complex and measuring the characteristic absorbance change. Rapid electron transfer is observed in the presence of testosterone, with the fast phase, representing 90% of the total absorbance change, having a rate of 14±2 s−1. Measurements of the first electron transfer were performed at various molar ratios of CPR/CYP3A4 in proteoliposomes; the rate was unaffected, consistent with a model in which first electron transfer takes place within a relatively stable CPR–CYP3A4 complex. Steady-state rates of NADPH oxidation and of 6β-hydroxytestosterone formation were also measured as a function of the molar ratio of CPR/CYP3A4 in the proteoliposomes. These rates increased with increasing CPR/CYP3A4 ratio, showing a hyperbolic dependency indicating a Kd (app) of ~0.4 μM. This suggests that the CPR–CYP3A4 complex can dissociate and reform between the first and second electron transfers.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Bjerrum, Morten J., Danilo R. Casimiro, I. Jy Chang, Angel J. Di Bilio, Harry B. Gray, Michael G. Hill, Ralf Langen et al. "Electron transfer in ruthenium-modified proteins". Journal of Bioenergetics and Biomembranes 27, n.º 3 (junio de 1995): 295–302. http://dx.doi.org/10.1007/bf02110099.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Coon, Joshua J., Jeffrey Shabanowitz, Donald F. Hunt y John E. P. Syka. "Electron transfer dissociation of peptide anions". Journal of the American Society for Mass Spectrometry 16, n.º 6 (junio de 2005): 880–82. http://dx.doi.org/10.1016/j.jasms.2005.01.015.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Han, Liang y Catherine E. Costello. "Electron Transfer Dissociation of Milk Oligosaccharides". Journal of The American Society for Mass Spectrometry 22, n.º 6 (14 de abril de 2011): 997–1013. http://dx.doi.org/10.1007/s13361-011-0117-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Li, Xiaojuan, Cheng Lin, Liang Han, Catherine E. Costello y Peter B. O’Connor. "Charge remote fragmentation in electron capture and electron transfer dissociation". Journal of the American Society for Mass Spectrometry 21, n.º 4 (abril de 2010): 646–56. http://dx.doi.org/10.1016/j.jasms.2010.01.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Guberman-Pfeffer, Matthew J. y Nikhil S. Malvankar. "Making protons tag along with electrons". Biochemical Journal 478, n.º 23 (6 de diciembre de 2021): 4093–97. http://dx.doi.org/10.1042/bcj20210592.

Texto completo
Resumen
Every living cell needs to get rid of leftover electrons when metabolism extracts energy through the oxidation of nutrients. Common soil microbes such as Geobacter sulfurreducens live in harsh environments that do not afford the luxury of soluble, ingestible electron acceptors like oxygen. Instead of resorting to fermentation, which requires the export of reduced compounds (e.g. ethanol or lactate derived from pyruvate) from the cell, these organisms have evolved a means to anaerobically respire by using nanowires to export electrons to extracellular acceptors in a process called extracellular electron transfer (EET) [ 1]. Since 2005, these nanowires were thought to be pili filaments [ 2]. But recent studies have revealed that nanowires are composed of multiheme cytochromes OmcS [ 3, 4] and OmcZ [ 5] whereas pili remain inside the cell during EET and are required for the secretion of nanowires [ 6]. However, how electrons are passed to these nanowires remains a mystery ( Figure 1A). Periplasmic cytochromes (Ppc) called PpcA-E could be doing the job, but only two of them (PpcA and PpcD) can couple electron/proton transfer — a necessary condition for energy generation. In a recent study, Salgueiro and co-workers selectively replaced an aromatic with an aliphatic residue to couple electron/proton transfer in PpcB and PpcE (Biochem. J. 2021, 478 (14): 2871–2887). This significant in vitro success of their protein engineering strategy may enable the optimization of bioenergetic machinery for bioenergy, biofuels, and bioelectronics applications.
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

HUBER, Robert. "A structural basis of light energy and electron transfer in biology". European Journal of Biochemistry 187, n.º 2 (enero de 1990): 283–305. http://dx.doi.org/10.1111/j.1432-1033.1990.tb15305.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Krishnan, V. "Electron transfer in chemistry and biology — The primary events in photosynthesis". Resonance 16, n.º 12 (diciembre de 2011): 1201–10. http://dx.doi.org/10.1007/s12045-011-0135-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Krishnan, V. "Electron transfer in chemistry and biology — The primary events in photosynthesis". Resonance 2, n.º 12 (diciembre de 1997): 77–86. http://dx.doi.org/10.1007/bf02836909.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Cho, Seung-Hyun y Jon Beckwith. "Mutations of the Membrane-Bound Disulfide Reductase DsbD That Block Electron Transfer Steps from Cytoplasm to Periplasm in Escherichia coli". Journal of Bacteriology 188, n.º 14 (15 de julio de 2006): 5066–76. http://dx.doi.org/10.1128/jb.00368-06.

Texto completo
Resumen
ABSTRACT The cytoplasmic membrane protein DsbD keeps the periplasmic disulfide isomerase DsbC reduced, using the cytoplasmic reducing power of thioredoxin. DsbD contains three domains, each containing two reactive cysteines. One membrane-embedded domain, DsbDβ, transfers electrons from thioredoxin to the carboxy-terminal thioredoxin-like periplasmic domain DsbDγ. To evaluate the role of conserved amino acid residues in DsbDβ in the electron transfer process, we substituted alanines for each of 19 conserved amino acid residues and assessed the in vivo redox states of DsbC and DsbD. The mutant DsbDs of 11 mutants which caused defects in DsbC reduction showed relatively oxidized redox states. To analyze the redox state of each DsbD domain, we constructed a thrombin-cleavable DsbD (DsbDTH) from which we could generate all three domains as separate polypeptide chains by thrombin treatment in vitro. We divided the mutants with strong defects into two classes. The first mutant class consists of mutant DsbDβ proteins that cannot receive electrons from cytoplasmic thioredoxin, resulting in a DsbD that has all six of its cysteines disulfide bonded. The second mutant class represents proteins in which the transfer of electrons from DsbDβ to DsbDγ appears to be blocked. This class includes the mutant with the most clear-cut defect, P284A. We relate the properties of the mutants to the positions of the amino acids in the structure of DsbD and discuss mechanisms that would interfere with the electron transfer process.
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Kuznetsov, Vadim Yu, Emek Blair, Patrick J. Farmer, Thomas L. Poulos, Amanda Pifferitti y Irina F. Sevrioukova. "The Putidaredoxin Reductase-Putidaredoxin Electron Transfer Complex". Journal of Biological Chemistry 280, n.º 16 (15 de febrero de 2005): 16135–42. http://dx.doi.org/10.1074/jbc.m500771200.

Texto completo
Resumen
Interaction and electron transfer between putidaredoxin reductase (Pdr) and putidaredoxin (Pdx) fromPseudomonas putidawas studied by molecular modeling, mutagenesis, and stopped flow techniques. Based on the crystal structures of Pdr and Pdx, a complex between the proteins was generated using computer graphics methods. In the model, Pdx is docked above the isoalloxazine ring of FAD of Pdr with the distance between the flavin and [2Fe-2S] of 14.6 Å. This mode of interaction allows Pdx to easily adjust and optimize orientation of its cofactor relative to Pdr. The key residues of Pdx located at the center, Asp38and Trp106, and at the edge of the protein-protein interface, Tyr33and Arg66, were mutated to test the Pdr-Pdx computer model. The Y33F, Y33A, D38N, D38A, R66A, R66E, W106F, W106A, and Δ106 mutations did not affect assembly of the [2Fe-2S] cluster and resulted in a marginal change in the redox potential of Pdx. The electron-accepting ability of Δ106 Pdx was similar to that of the wild-type protein, whereas electron transfer rates from Pdr to other mutants were diminished to various degrees with the smallest and largest effects on the kinetic parameters of the Pdr-to-Pdx electron transfer reaction caused by the Trp106and Tyr33/Arg66substitutions, respectively. Compared with wild-type Pdx, the binding affinity of all studied mutants to Pdr was significantly higher. Experimental results were in agreement with theoretical predictions and suggest that: (i) Pdr-Pdx complex formation is mainly driven by steric complementarity, (ii) bulky side chains of Tyr33, Arg66, and Trp106prevent tight binding of oxidized Pdx and facilitate dissociation of the reduced iron-sulfur protein from Pdr, and (iii) transfer of an electron from FAD to [2Fe-2S] can occur with various orientations between the cofactors through multiple electron transfer pathways that do not involve Trp106but are likely to include Asp38and Cys39.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía