Literatura académica sobre el tema "Biological dynamic"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Biological dynamic".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Biological dynamic"
Zhang, Mo y Hai Shen. "Biological Communication Dynamic Model Research". Applied Mechanics and Materials 556-562 (mayo de 2014): 4975–78. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.4975.
Texto completoSmith, Jeremy C., Pan Tan, Loukas Petridis y Liang Hong. "Dynamic Neutron Scattering by Biological Systems". Annual Review of Biophysics 47, n.º 1 (20 de mayo de 2018): 335–54. http://dx.doi.org/10.1146/annurev-biophys-070317-033358.
Texto completoCampelo, F. y A. Hernández-Machado. "Dynamic instabilities in biological membranes". PAMM 7, n.º 1 (diciembre de 2007): 1121403–4. http://dx.doi.org/10.1002/pamm.200700341.
Texto completoZhang, Duzhen, Tielin Zhang, Shuncheng Jia y Bo Xu. "Multi-Sacle Dynamic Coding Improved Spiking Actor Network for Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 1 (28 de junio de 2022): 59–67. http://dx.doi.org/10.1609/aaai.v36i1.19879.
Texto completoGusain, Pooja, Neha Sharma, Tsuyoshi Yoda y Masahiro Takagi. "1P220 Dynamic Response of Menthol on Thermo-Induced Cell Membrane: More than Receptors(13B. Biological & Artifical membrane: Dynamics,Poster)". Seibutsu Butsuri 53, supplement1-2 (2013): S142. http://dx.doi.org/10.2142/biophys.53.s142_3.
Texto completoKinugasa, Tetsuya y Yasuhiro Sugimoto. "Dynamically and Biologically Inspired Legged Locomotion: A Review". Journal of Robotics and Mechatronics 29, n.º 3 (20 de junio de 2017): 456–70. http://dx.doi.org/10.20965/jrm.2017.p0456.
Texto completoKinugasa, Tetsuya, Koh Hosoda, Masatsugu Iribe, Fumihiko Asano y Yasuhiro Sugimoto. "Special Issue on Dynamically and Biologically Inspired Legged Locomotion". Journal of Robotics and Mechatronics 29, n.º 3 (20 de junio de 2017): 455. http://dx.doi.org/10.20965/jrm.2017.p0455.
Texto completoMarigo, Alessia y Benedetto Piccoli. "A model for biological dynamic networks". Networks & Heterogeneous Media 6, n.º 4 (2011): 647–63. http://dx.doi.org/10.3934/nhm.2011.6.647.
Texto completoWu, Wu, Feng Wang y Maw Chang. "Dynamic sensitivity analysis of biological systems". BMC Bioinformatics 9, Suppl 12 (2008): S17. http://dx.doi.org/10.1186/1471-2105-9-s12-s17.
Texto completoCushing, J. M. "Dynamic energy budgets in biological systems". Mathematical Biosciences 137, n.º 2 (octubre de 1996): 135–37. http://dx.doi.org/10.1016/s0025-5564(96)00047-8.
Texto completoTesis sobre el tema "Biological dynamic"
McGregor, Juliette Elizabeth. "Imaging dynamic biological processes". Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609205.
Texto completoReichenbach, Tobias. "Dynamic patterns of biological systems". Diss., lmu, 2008. http://nbn-resolving.de/urn:nbn:de:bvb:19-84101.
Texto completoMagi, Ross. "Dynamic behavior of biological membranes". Thesis, The University of Utah, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3680576.
Texto completoBiological membranes are important structural units in the cell. Composed of a lipid bilayer with embedded proteins, most exploration of membranes has focused on the proteins. While proteins play a vital role in membrane function, the lipids themselves can behave in dynamic ways which affect membrane structure and function. Furthermore, the dynamic behavior of the lipids can affect and be affected by membrane geometry. A novel fluid membrane model is developed in which two different types of lipids flow in a deforming membrane, modelled as a two-dimensional Riemannian manifold that resists bending. The two lipids behave like viscous Newtonian fluids whose motion is determined by realistic physical forces. By examining the stability of various shapes, it is shown that instability may result if the two lipids forming the membrane possess biophysical qualities, which cause them to respond differently to membrane curvature. By means of numerical simulation of a simplified model, it is shown that this instability results in curvature induced phase separation. Applying the simplified model to the Golgi apparatus, it is hypothesized that curvature induced phase separation may occur in a Golgi cisterna, aiding in the process of protein sorting.
In addition to flowing tangentially in the membrane, lipids also flip back and forth between the two leaflets in the bilayer. While traditionally assumed to occur very slowly, recent experiments have indicated that lipid flip-flop may occur rapidly. Two models are developed that explore the effect of rapid flip-flop on membrane geometry and the effect of a pH gradient on the distribution of charged lipids in the leaflets of the bilayer. By means of a stochastic model, it is shown that even the rapid flip-flop rates observed are unlikely to be significant inducers of membrane curvature. By means of a nonlinear Poisson- Boltzmann model, it is shown that pH gradients are unlikely to be significant inducers of bilayer asymmetry under physiological conditions.
Waheed, Qaiser. "Molecular Dynamic Simulations of Biological Membranes". Doctoral thesis, KTH, Teoretisk biologisk fysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-102268.
Texto completoQC 20120913
Jones, E. Y. "Structural and dynamic studies on biological macromolecules". Thesis, University of Oxford, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.371551.
Texto completoAbul-Haija, Yousef Mustafa Yousef. "Dynamic supramolecular hydrogels with adaptive biological functionality". Thesis, University of Strathclyde, 2015. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=25997.
Texto completoBunyapaiboonsri, Taridaporn. "Dynamic combinatorial chemistry : Exploration using biological receptors". Université Louis Pasteur (Strasbourg) (1971-2008), 2003. http://www.theses.fr/2003STR13065.
Texto completoDynamic combinatorial chemistry (DCC) has recently been introduced as a new and attractive approach for generating and screening large numbers of library compounds in one step. Based upon the reversible interconnection between library components, the self-adjusting process give access to selection and amplification of the best binder in the presence of a target. In this thesis, two biological targets were chosen to explore the DCC approach. The reversibility of the system was achieved using disulfide interchange or reversible acyl hydrazone formation. Firstly, a dynamic library of acetylcholinesterase inhibitors was generated through disulfide exchange. The reversibility of the system was observed by NMR spectroscopy. Upon scrambling 5 initial homodisulfides in the presence of a reducing agent, a 15-compound library was produced. The library components were analyzed by ESI-MS and CE. Secondly, a dynamic combinatorial library of acetylcholinesterase inhibitors was further generated through reversible acyl hydrazone formation. The pre-equilibrated process was applied to produce a dynamic library composed of 66 possible species, from a set of 13 initial aldehyde and hydrazide building blocks. Using a technique called dynamic deconvolution, a highly potent inhibitor was identified with IC50 in the nanomolar range. Finally, the pre-equilibrated process combined with the dynamic deconvolution technique was further studied to identify HPr kinase/phosphatase inhibitors. From a set of 21 initial aldehyde and hydrazide builiding blocks, a dynamic library of 440 possible compounds was formed in one operation. A bis-cationic heterocyclic ligand was identified as a relatively potent inhibitor, displaying an IC50 in the micromolar range
Romanel, Alessandro. "Dynamic Biological Modelling: a language-based approach". Doctoral thesis, Università degli studi di Trento, 2010. https://hdl.handle.net/11572/368272.
Texto completoCavallo, Antonio. "Four dimensional particle tracking in biological dynamic processes". [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=964904667.
Texto completoLewis, Mark A. "Analysis of dynamic and stationary biological pattern formation". Thesis, University of Oxford, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.276976.
Texto completoLibros sobre el tema "Biological dynamic"
Aon, M. A. y S. Cortassa. Dynamic Biological Organization. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5828-2.
Texto completoHannon, Bruce y Matthias Ruth. Modeling Dynamic Biological Systems. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05615-9.
Texto completoRuth, Matthias y Bruce Hannon. Modeling Dynamic Biological Systems. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-0651-4.
Texto completoMatthias, Ruth, ed. Modeling dynamic biological systems. New York: Springer, 1997.
Buscar texto completoR, Carson Ewart, ed. Mathematical modelling of dynamic biological systems. 2a ed. Letchworth, Hertfordshire, England: Research Studies Press, 1985.
Buscar texto completoRao, Vadrevu Sree Hari y Ponnada Raja Sekhara Rao. Dynamic Models and Control of Biological Systems. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-0359-4.
Texto completoM, Harris-Warrick Ronald, ed. Dynamic biological networks: The stomatogastric nervous system. Cambridge, Mass: MIT Press, 1992.
Buscar texto completoRao, Vadrevu Sree Hari. Dynamic models and control of biological systems. Dordrecht: Springer, 2009.
Buscar texto completoS. A. L. M. Kooijman. Dynamic energy and mass budgets in biological systems. 2a ed. Cambridge, UK: Cambridge University Press, 2000.
Buscar texto completoAon, M. A. Dynamic biological organization: Fundamentals as applied to cellular systems. London: Chapman & Hall, 1997.
Buscar texto completoCapítulos de libros sobre el tema "Biological dynamic"
Bloomfield, Victor A. "Biological Applications". En Dynamic Light Scattering, 363–416. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2389-1_10.
Texto completoAon, M. A. y S. Cortassa. "General concepts". En Dynamic Biological Organization, 3–43. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5828-2_1.
Texto completoAon, M. A. y S. Cortassa. "Spatio-temporal coordination of cellular energetics and metabolism during development". En Dynamic Biological Organization, 361–90. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5828-2_10.
Texto completoAon, M. A. y S. Cortassa. "Cell growth and differentiation from the perspective of dynamics and thermodynamics of cellular and subcellular processes". En Dynamic Biological Organization, 391–429. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5828-2_11.
Texto completoAon, M. A. y S. Cortassa. "Dynamic coupling and spatio–temporal coherence in cellular systems". En Dynamic Biological Organization, 430–84. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5828-2_12.
Texto completoAon, M. A. y S. Cortassa. "Conclusions and outlook: models, facts and biocomplexity". En Dynamic Biological Organization, 485–97. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5828-2_13.
Texto completoAon, M. A. y S. Cortassa. "Dynamic organization in cellular systems". En Dynamic Biological Organization, 44–72. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5828-2_2.
Texto completoAon, M. A. y S. Cortassa. "Rhythms as a fundamental property of biological systems". En Dynamic Biological Organization, 73–103. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5828-2_3.
Texto completoAon, M. A. y S. Cortassa. "Symmetry in dynamic biological organization". En Dynamic Biological Organization, 104–44. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5828-2_4.
Texto completoAon, M. A. y S. Cortassa. "Dynamic organization in biologically oriented artificial systems". En Dynamic Biological Organization, 145–76. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5828-2_5.
Texto completoActas de conferencias sobre el tema "Biological dynamic"
Kozhevnikov, Nikolai M. "Biological materials for dynamic holography". En International Conference on Advanced Optical Materials and Devices, editado por Edgar A. Silinsh, Arthur Medvids, Andrejs R. Lusis y Andris O. Ozols. SPIE, 1997. http://dx.doi.org/10.1117/12.266850.
Texto completoOlivo-Marin, Jean-Christophe. "MOVIE CRUNCHING IN BIOLOGICAL DYNAMIC IMAGING". En Proceedings of the Conference CSB 2006. PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO., 2006. http://dx.doi.org/10.1142/9781860947575_0007.
Texto completoAy, Ferhat, Thang N. Dinh, My T. Thai y Tamer Kahveci. "Finding Dynamic Modules of Biological Regulatory Networks". En 2010 IEEE International Conference on BioInformatics and BioEngineering. IEEE, 2010. http://dx.doi.org/10.1109/bibe.2010.31.
Texto completoShaked, Natan T., Matthew T. Rinehart y Adam Wax. "Dynamic Quantitative Phase Microscopy of Biological Cells". En Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/cleo.2009.cfa4.
Texto completoWu, Cheng-Tao, Shinq-Jen Wu y Jyh-Yeong Chang. "Inverse Aspect of Optimization for Dynamic Biological Pathway". En 2012 International Symposium on Computer, Consumer and Control (IS3C). IEEE, 2012. http://dx.doi.org/10.1109/is3c.2012.146.
Texto completoTahmassebi, Amirhessam, Behshad Mohebali, Lisa Meyer-Baese, Philip Philip Solimine, Katja Pinker y Anke Meyer-Baese. "Determining driver nodes in dynamic signed biological networks". En Smart Biomedical and Physiological Sensor Technology XVI, editado por Brian M. Cullum, Eric S. McLamore y Douglas Kiehl. SPIE, 2019. http://dx.doi.org/10.1117/12.2519550.
Texto completoWang, Charles C. N., David A. Hecht, Han C. W. Hsiao, Phillip C. Y. Sheu y Jeffrey J. P. Tsai. "Describing Dynamic Biological Systems in SPDL and SCDL". En 2009 Ninth IEEE International Conference on Bioinformatics and BioEngineering (BIBE). IEEE, 2009. http://dx.doi.org/10.1109/bibe.2009.56.
Texto completoSendra, G. H., J. C. Salerno, C. Weber, H. J. Rabal, R. Arizaga y M. Trivi. "Biological specimens analysis using dynamic speckle spectral bands". En Optical Metrology, editado por Heidi Ottevaere, Peter DeWolf y Diederik S. Wiersma. SPIE, 2005. http://dx.doi.org/10.1117/12.612606.
Texto completoAfonina, S., A. Rondi, D. Kiselev, L. Bonacina y J. P. Wolf. "Label free optimal dynamic discrimination of biological macromolecules". En SPIE LASE, editado por Alexander Heisterkamp, Peter R. Herman, Michel Meunier y Stefan Nolte. SPIE, 2013. http://dx.doi.org/10.1117/12.2002467.
Texto completoRastgoftar, Hossein y Suhada Jayasuriya. "Alignment as Biological Inspiration for Control of Multi Agent Systems". En ASME 2014 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/dscc2014-6141.
Texto completoInformes sobre el tema "Biological dynamic"
Rabitz, Herschel y Robert Levis. MURI: Optimal Quantum Dynamic Discrimination of Chemical and Biological Agents. Fort Belvoir, VA: Defense Technical Information Center, junio de 2008. http://dx.doi.org/10.21236/ada498514.
Texto completoCummings, Molly E. Biological Response to the Dynamic Spectral-Polarized Underwater Light Field. Fort Belvoir, VA: Defense Technical Information Center, enero de 2010. http://dx.doi.org/10.21236/ada541131.
Texto completoCummings, Molly E., Samir Ahmed, Heidi Dierssen, Alexander Gilerson, William F. Gilly, George Kattawar, Brad Seibel y James Sullivan. Biological Response to the Dynamic Spectral-Polarized Underwater Light Field. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2013. http://dx.doi.org/10.21236/ada598460.
Texto completoCummings, Molly E. Biological Response to the Dynamic Spectral-Polarized Underwater Light Field. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2011. http://dx.doi.org/10.21236/ada557141.
Texto completoTimlin, Jerilyn Ann, Howland D. T. Jones, Aaron M. Collins, Anne M. Ruffing, Kylea Joy Parchert, Christine Alexandra Trahan, Omar Fidel Garcia et al. From benchtop to raceway : spectroscopic signatures of dynamic biological processes in algal communities. Office of Scientific and Technical Information (OSTI), septiembre de 2012. http://dx.doi.org/10.2172/1055623.
Texto completoSeale, Maria, Natàlia Garcia-Reyero, R. Salter y Alicia Ruvinsky. An epigenetic modeling approach for adaptive prognostics of engineered systems. Engineer Research and Development Center (U.S.), julio de 2021. http://dx.doi.org/10.21079/11681/41282.
Texto completoBARKHATOV, NIKOLAY y SERGEY REVUNOV. A software-computational neural network tool for predicting the electromagnetic state of the polar magnetosphere, taking into account the process that simulates its slow loading by the kinetic energy of the solar wind. SIB-Expertise, diciembre de 2021. http://dx.doi.org/10.12731/er0519.07122021.
Texto completoAhring, Birgitte K., Nitin S. Baliga, James R. Frederickson, Samuel Kaplan, Himadri B. Pakrasi, Joel G. Pounds, Imran shah et al. Biological Interactions and Dynamics Science Theme Advisory Panel (BID-STAP). Office of Scientific and Technical Information (OSTI), mayo de 2011. http://dx.doi.org/10.2172/1089109.
Texto completoZurada, Jacek M., Andy G. Lozowski y Mykola Lysetskiy. Modeling of Spatial and Temporal Dynamics in Biological Olfactory Systems. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2007. http://dx.doi.org/10.21236/ada472796.
Texto completoSingh, Rajesh, Marshall Richmond, Pedro Romero-Gomez, Cynthia Rakowski y John Serkowski. Validation of Computational Fluid Dynamics Simulations for Biological Performance Assessment in Hydropower units. Office of Scientific and Technical Information (OSTI), abril de 2021. http://dx.doi.org/10.2172/1798166.
Texto completo