Literatura académica sobre el tema "Bioinspired Confined Catalysis"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Bioinspired Confined Catalysis".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Bioinspired Confined Catalysis"
Bauer, Christina A, David B. Robinson y Blake A Simmons. "Silica Particle Formation in Confined Environments via Bioinspired Polyamine Catalysis at Near-Neutral pH". Small 3, n.º 1 (2 de enero de 2007): 58–62. http://dx.doi.org/10.1002/smll.200600352.
Texto completoZhu, Congcong, Yunfei Teng, Ganhua Xie, Pei Li, Yongchao Qian, Bo Niu, Pei Liu et al. "Correction: Bioinspired hydrogel-based nanofluidic ionic diodes: nano-confined network tuning and ion transport regulation". Chemical Communications 56, n.º 73 (2020): 10767. http://dx.doi.org/10.1039/d0cc90381g.
Texto completoZhu, Congcong, Yunfei Teng, Ganhua Xie, Pei Li, Yongchao Qian, Bo Niu, Pei Liu et al. "Bioinspired hydrogel-based nanofluidic ionic diodes: nano-confined network tuning and ion transport regulation". Chemical Communications 56, n.º 58 (2020): 8123–26. http://dx.doi.org/10.1039/d0cc01313g.
Texto completoTan, Mei‐Ling, M. Ángeles Gutiérrez López, Naomi Sakai y Stefan Matile. "Anion‐(π)n‐π Catalytic Micelles". Angewandte Chemie, 25 de agosto de 2023. http://dx.doi.org/10.1002/ange.202310393.
Texto completoTan, Mei‐Ling, M. Ángeles Gutiérrez López, Naomi Sakai y Stefan Matile. "Anion‐(π)n‐π Catalytic Micelles". Angewandte Chemie International Edition, 25 de agosto de 2023. http://dx.doi.org/10.1002/anie.202310393.
Texto completoLiu, Bi-Ying, Yu-Hui Zhang, Yongchao Qian, Di Quan, Mei-Juan Jia, Xiao-Yan Jin, Min Zhou, Xiang-Yu Kong y Lei Jiang. "Single Idiosyncratic Ionic Generator Working in Iso‐Osmotic Solutions Via Ligand Confined Assembled in Gaps Between Nanosheets". Angewandte Chemie International Edition, 20 de diciembre de 2023. http://dx.doi.org/10.1002/anie.202317361.
Texto completoNoll, Niklas y Frank Würthner. "Bioinspired Water Preorganization in Confined Space for Efficient Water Oxidation Catalysis in Metallosupramolecular Ruthenium Architectures". Accounts of Chemical Research, 6 de mayo de 2024. http://dx.doi.org/10.1021/acs.accounts.4c00148.
Texto completoZhao, Wei, Zhouyue Lei, Baohu Wu y peiyi Wu. "Hydrogels with Differentiated Hydrogen‐Bonding Networks for Bioinspired Stress Response". Angewandte Chemie International Edition, 28 de marzo de 2024. http://dx.doi.org/10.1002/anie.202400531.
Texto completoZhu, Ran, Zhenyang Zhao, Rui Yan, Min Wu, Weiqion Zheng, Mao Wang, Chong Cheng, Shuang Li y Changsheng Zhao. "Sieve Tube‐Inspired Polysulfide Cathode with Long‐Range Ordered Channels and Localized Capture‐Catalysis Microenvironments for Efficient Li–S Batteries". Advanced Functional Materials, 22 de diciembre de 2023. http://dx.doi.org/10.1002/adfm.202314593.
Texto completoDiao, Donglin, A. Jalila Simaan, Alexandre Martinez y Cedric Colomban. "Bioinspired complexes confined in well-defined capsules: getting closer to metalloenzyme functionalities." Chemical Communications, 2023. http://dx.doi.org/10.1039/d2cc06990c.
Texto completoTesis sobre el tema "Bioinspired Confined Catalysis"
Diao, Donglin. "Bioinspired complexes engaged within hemicryptophane cage-ligands for O2 activation and C-H bond functionalization in confined space". Electronic Thesis or Diss., Ecole centrale de Marseille, 2022. http://www.theses.fr/2022ECDM0007.
Texto completoThis thesis aims at developing new hemicryptophane cage-ligands to obtain confined metal-based catalysts for bioinspired O2 activation and C-H bond functionalization in confined space. The design of the targeted cages aims at introducing ligands inspired from metalloproteins active sites, for coordination of biorelevant metals (Cu, Fe, Zn). Importantly, the hemicryptophane structure provide a hydrophobic cavity around the active metal core. This structure aims at stabilizing highly reactive intermediates and reaching different reactivity compare to open model complexes, devoid of cavity. In this context, a major objective of this work was to reach Cu-based bioinspired catalysts able to activate molecular oxygen for challenging C-H bond functionalization. The first part of the thesis consists in a comprehensive literature survey on (i) background of previous applications of hemicryptophane cages and (ii) recent advances in caged bioinspired complexes. The application of our open and caged Cu-complex, based on the tris(pyridyl)amine (TPA) ligand is next described. These catalysts have been used for O2 activation and unusual intramolecular C-H bond functionalization. We then prepare and studied a new TPA-hemicryptophane cage equipped with a C(triazole)-H hydrogen bonding cavity. This functionalized cavity aims at reproducing the binding cavities found in metalloproteins. Finally, hemicryptophane cages based on the triazacyclononane (TACN) ligand have been prepared for the first time. The goal of these cage-ligands is to develop new bioinspired Cu and Fe complexes that could be, for instance, used as O2 activating catalysts
Capítulos de libros sobre el tema "Bioinspired Confined Catalysis"
"Introduction to Bioinspired Nanomaterials". En Materials Research Foundations, 1–35. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901571-1.
Texto completo