Artículos de revistas sobre el tema "Bioinformatics, metalloproteins, metal-binding proteins"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Bioinformatics, metalloproteins, metal-binding proteins".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Zhang, Yan y Junge Zheng. "Bioinformatics of Metalloproteins and Metalloproteomes". Molecules 25, n.º 15 (24 de julio de 2020): 3366. http://dx.doi.org/10.3390/molecules25153366.
Texto completoAndreini, Claudia y Antonio Rosato. "Structural Bioinformatics and Deep Learning of Metalloproteins: Recent Advances and Applications". International Journal of Molecular Sciences 23, n.º 14 (12 de julio de 2022): 7684. http://dx.doi.org/10.3390/ijms23147684.
Texto completoWang, Kai, Nan Lyu, Hongjuan Diao, Shujuan Jin, Tao Zeng, Yaoqi Zhou y Ruibo Wu. "GM-DockZn: a geometry matching-based docking algorithm for zinc proteins". Bioinformatics 36, n.º 13 (5 de mayo de 2020): 4004–11. http://dx.doi.org/10.1093/bioinformatics/btaa292.
Texto completoMonette, Anne y Andrew J. Mouland. "Zinc and Copper Ions Differentially Regulate Prion-Like Phase Separation Dynamics of Pan-Virus Nucleocapsid Biomolecular Condensates". Viruses 12, n.º 10 (18 de octubre de 2020): 1179. http://dx.doi.org/10.3390/v12101179.
Texto completoAramini, James M. y Hans J. Vogel. "Quadrupolar metal ion NMR studies of metalloproteins". Biochemistry and Cell Biology 76, n.º 2-3 (1 de mayo de 1998): 210–22. http://dx.doi.org/10.1139/o98-037.
Texto completoDudev, Todor, Luis Manuel Frutos y Obis Castaño. "How mechanical forces can modulate the metal affinity and selectivity of metal binding sites in proteins". Metallomics 12, n.º 3 (2020): 363–70. http://dx.doi.org/10.1039/c9mt00283a.
Texto completoArnesano, Fabio, Lucia Banci y Mario Piccioli. "NMR structures of paramagnetic metalloproteins". Quarterly Reviews of Biophysics 38, n.º 2 (mayo de 2005): 167–219. http://dx.doi.org/10.1017/s0033583506004161.
Texto completoYu, Yue, Ruobing Wang y Ruijie D. Teo. "Machine Learning Approaches for Metalloproteins". Molecules 27, n.º 4 (14 de febrero de 2022): 1277. http://dx.doi.org/10.3390/molecules27041277.
Texto completoCarugo, Oliviero. "Metalloproteins: metal binding predicted on the basis of the amino acid sequence". Journal of Applied Crystallography 41, n.º 1 (16 de enero de 2008): 104–9. http://dx.doi.org/10.1107/s0021889807065235.
Texto completoÖz, Gülin, Dean L. Pountney y Ian M. Armitage. "NMR spectroscopic studies of I = 1/2 metal ions in biological systems". Biochemistry and Cell Biology 76, n.º 2-3 (1 de mayo de 1998): 223–34. http://dx.doi.org/10.1139/o98-059.
Texto completoNguyen, Kiet T., Kristina Piastro y Keith M. Derbyshire. "LpqM, a Mycobacterial Lipoprotein-Metalloproteinase, Is Required for Conjugal DNA Transfer in Mycobacterium smegmatis". Journal of Bacteriology 191, n.º 8 (20 de febrero de 2009): 2721–27. http://dx.doi.org/10.1128/jb.00024-09.
Texto completoLIN, CHIN-TENG, KEN-LI LIN, CHIH-HSIEN YANG, I.-FANG CHUNG, CHUEN-DER HUANG y YUH-SHYONG YANG. "PROTEIN METAL BINDING RESIDUE PREDICTION BASED ON NEURAL NETWORKS". International Journal of Neural Systems 15, n.º 01n02 (febrero de 2005): 71–84. http://dx.doi.org/10.1142/s0129065705000116.
Texto completoChipinda, Itai, Justin M. Hettick y Paul D. Siegel. "Haptenation: Chemical Reactivity and Protein Binding". Journal of Allergy 2011 (30 de junio de 2011): 1–11. http://dx.doi.org/10.1155/2011/839682.
Texto completoLin, Ying-Wu. "Uranyl Binding to Proteins and Structural-Functional Impacts". Biomolecules 10, n.º 3 (16 de marzo de 2020): 457. http://dx.doi.org/10.3390/biom10030457.
Texto completoDudev, Todor. "How Theoretical Evaluations Can Generate Guidelines for Designing/Engineering Metalloproteins with Desired Metal Affinity and Selectivity". Molecules 28, n.º 1 (28 de diciembre de 2022): 249. http://dx.doi.org/10.3390/molecules28010249.
Texto completoBraga, Camila Pereira, José Cavalcante Souza Vieira, Ryan A. Grove, Cory H. T. Boone, Aline de Lima Leite, Marília Afonso Rabelo Buzalaf, Ana Angélica Henrique Fernandes, Jiri Adamec y Pedro de Magalhaes Padilha. "A proteomic approach to identify metalloproteins and metal-binding proteins in liver from diabetic rats". International Journal of Biological Macromolecules 96 (marzo de 2017): 817–32. http://dx.doi.org/10.1016/j.ijbiomac.2016.12.073.
Texto completoWilson, Corey J., David Apiyo y Pernilla Wittung-Stafshede. "Role of cofactors in metalloprotein folding". Quarterly Reviews of Biophysics 37, n.º 3-4 (noviembre de 2004): 285–314. http://dx.doi.org/10.1017/s003358350500404x.
Texto completoWatly, Joanna, Aleksandra Hecel, Paulina Kolkowska, Henryk Kozlowski y Magdalena Rowinska-Zyrek. "Poly-Xaa Sequences in Proteins - Biological Role and Interactions with Metal Ions: Chemical and Medical Aspects". Current Medicinal Chemistry 25, n.º 1 (22 de enero de 2018): 22–48. http://dx.doi.org/10.2174/0929867324666170428104928.
Texto completoWang, Michael S., Kenric J. Hoegler y Michael H. Hecht. "Unevolved De Novo Proteins Have Innate Tendencies to Bind Transition Metals". Life 9, n.º 1 (9 de enero de 2019): 8. http://dx.doi.org/10.3390/life9010008.
Texto completoMoulis, Jean-Marc. "Cellular Dynamics of Transition Metal Exchange on Proteins: A Challenge but a Bonanza for Coordination Chemistry". Biomolecules 10, n.º 11 (21 de noviembre de 2020): 1584. http://dx.doi.org/10.3390/biom10111584.
Texto completoAl Bratty, Mohammed, Hassan A. Alhazmi, Sadique A. Javed, Zia Ur Rehman, Asim Najmi y Karam A. El-Sharkawy. "Rapid Screening and Estimation of Binding Constants for Interactions of Fe3+ with Two Metalloproteins, Apotransferrin and Transferrin, Using Affinity Mode of Capillary Electrophoresis". Journal of Spectroscopy 2021 (19 de noviembre de 2021): 1–10. http://dx.doi.org/10.1155/2021/6987454.
Texto completoLippi, M., A. Passerini, M. Punta, B. Rost y P. Frasconi. "MetalDetector: a web server for predicting metal-binding sites and disulfide bridges in proteins from sequence". Bioinformatics 24, n.º 18 (16 de julio de 2008): 2094–95. http://dx.doi.org/10.1093/bioinformatics/btn371.
Texto completoLevy, Mark A., Yu-Hwai Tsai, Andrew Reaume y Tammy M. Bray. "Cellular response of antioxidant metalloproteins in Cu/Zn SOD transgenic mice exposed to hyperoxia". American Journal of Physiology-Lung Cellular and Molecular Physiology 281, n.º 1 (1 de julio de 2001): L172—L182. http://dx.doi.org/10.1152/ajplung.2001.281.1.l172.
Texto completoSaponja, Jillian A. y Hans J. Vogel. "Quadrupolar central transition (QCT) and 13C NMR competition studies of metal ion binding to ovotransferrin". Canadian Journal of Chemistry 89, n.º 7 (julio de 2011): 779–88. http://dx.doi.org/10.1139/v11-019.
Texto completoChasapis, Christos T. "Interactions between metal binding viral proteins and human targets as revealed by network-based bioinformatics". Journal of Inorganic Biochemistry 186 (septiembre de 2018): 157–61. http://dx.doi.org/10.1016/j.jinorgbio.2018.06.012.
Texto completoBerniyanti, Titiek, Alexander Patera Nugraha, Novi Nurul Hidayati, Viol Dhea Kharisma, Albertus Putera Nugraha y Tengku Natasha Eleena Binti Tengku Ahmad Noor. "Computational study of Cu2+, Fe2+, Mn2+, Mn3+, Fe3+, CrO42-, Si4+, and Hg+ binding sites identification on cytokines to predict dental metal allergy: An in silico study". Journal of Pharmacy & Pharmacognosy Research 10, n.º 4 (1 de julio de 2022): 687–94. http://dx.doi.org/10.56499/jppres22.1372_10.4.687.
Texto completoZhang, Tuo, Eziz Kuliyev, Dexin Sui y Jian Hu. "The histidine-rich loop in the extracellular domain of ZIP4 binds zinc and plays a role in zinc transport". Biochemical Journal 476, n.º 12 (28 de junio de 2019): 1791–803. http://dx.doi.org/10.1042/bcj20190108.
Texto completoLi, Dandan, Tengbing He, Muhammad Saleem y Guandi He. "Metalloprotein-Specific or Critical Amino Acid Residues: Perspectives on Plant-Precise Detoxification and Recognition Mechanisms under Cadmium Stress". International Journal of Molecular Sciences 23, n.º 3 (3 de febrero de 2022): 1734. http://dx.doi.org/10.3390/ijms23031734.
Texto completoLee, Myungwoon, Tuo Wang, Olga V. Makhlynets, Yibing Wu, Nicholas F. Polizzi, Haifan Wu, Pallavi M. Gosavi et al. "Zinc-binding structure of a catalytic amyloid from solid-state NMR". Proceedings of the National Academy of Sciences 114, n.º 24 (31 de mayo de 2017): 6191–96. http://dx.doi.org/10.1073/pnas.1706179114.
Texto completoMaret, Wolfgang. "Zinc proteomics and the annotation of the human zinc proteome". Pure and Applied Chemistry 80, n.º 12 (1 de enero de 2008): 2679–87. http://dx.doi.org/10.1351/pac200880122679.
Texto completoZaman, Saif, Boris I. Chobrutskiy, Jay S. Patel, Blake M. Callahan, Moody Mihyu, Andrea Diviney, Wei Lue Tong y George Blanck. "Abstract B12: Potential neoantigen release and increased lymphocyte activity is facilitated by matrix metalloproteinase-dependent cleavage of mutant matrisome peptides in cutaneous melanoma". Cancer Research 80, n.º 19_Supplement (1 de octubre de 2020): B12. http://dx.doi.org/10.1158/1538-7445.mel2019-b12.
Texto completoPrabhakaran, Rajkumar, Sebastin Nirmal Rajkumar, Tharmarajan Ramprasath y Govindan Sadasivam Selvam. "Identification of promoter PcadR, in silico characterization of cadmium resistant gene cadR and molecular cloning of promoter PcadR from Pseudomonas aeruginosa BC15". Toxicology and Industrial Health 34, n.º 12 (8 de noviembre de 2018): 819–33. http://dx.doi.org/10.1177/0748233718795934.
Texto completoTaherkhani, Amir, Zahra Khamverdi, Mahdi Sayafi y Shirin Moradkhani. "Investigation on Chemical Constituents of Foeniculum vulgare Essential Oil and the Molecular Docking Studies of its Components for Possible Matrix Metalloproteinase-13 Inhibition". Avicenna Journal of Pharmaceutical Research 1, n.º 2 (30 de diciembre de 2020): 65–71. http://dx.doi.org/10.34172/ajpr.2020.12.
Texto completoFontes, Marcos, Carlos Fernandes, Juliana dos Santos, Guilherme Salvador, Rafael Borges, Angelo Magro, Fabio Cardoso y Thiago Dreyer. "Structural basis for a novel model for myotoxic activity on phospholipases A2". Acta Crystallographica Section A Foundations and Advances 70, a1 (5 de agosto de 2014): C114. http://dx.doi.org/10.1107/s2053273314098854.
Texto completoAkers, Johnny C., HoangMinh HoDac, Richard H. Lathrop y Ming Tan. "Identification and Functional Analysis of CT069 as a Novel Transcriptional Regulator in Chlamydia". Journal of Bacteriology 193, n.º 22 (9 de septiembre de 2011): 6123–31. http://dx.doi.org/10.1128/jb.05976-11.
Texto completoFonseca-García, Citlali, Claudia Marina López-García, Ronal Pacheco, Elisabeth Armada, Noreide Nava, Rocío Pérez-Aguilar, Jorge Solis-Miranda y Carmen Quinto. "Metallothionein1A Regulates Rhizobial Infection and Nodulation in Phaseolus vulgaris". International Journal of Molecular Sciences 23, n.º 3 (27 de enero de 2022): 1491. http://dx.doi.org/10.3390/ijms23031491.
Texto completoNeuman, Benjamin W., Jeremiah S. Joseph, Kumar S. Saikatendu, Pedro Serrano, Amarnath Chatterjee, Margaret A. Johnson, Lujian Liao et al. "Proteomics Analysis Unravels the Functional Repertoire of Coronavirus Nonstructural Protein 3". Journal of Virology 82, n.º 11 (26 de marzo de 2008): 5279–94. http://dx.doi.org/10.1128/jvi.02631-07.
Texto completoAgrelli, Almerinda, Niedja Fittipaldi Vasconcelos, Rayane Cristine Santos da Silva, Carina Lucena Mendes-Marques, Isabel Renata de Souza Arruda, Priscilla Stela Santana de Oliveira, Luzia Rejane Lisbôa Santos et al. "Peptides for Coating TiO2 Implants: An In Silico Approach". International Journal of Molecular Sciences 23, n.º 22 (14 de noviembre de 2022): 14048. http://dx.doi.org/10.3390/ijms232214048.
Texto completoHuang, Ke, Yaotang Deng, Wenya Yuan, Jian Geng, Guanghai Wang y Fei Zou. "Phospholipase D1 Ameliorates Apoptosis in Chronic Renal Toxicity Caused by Low-Dose Cadmium Exposure". BioMed Research International 2020 (31 de marzo de 2020): 1–12. http://dx.doi.org/10.1155/2020/7091053.
Texto completoPhilpott, Caroline C., Avery G. Frey, Moon-Suhn Ryu, Daniel Palenchar, Justin Wildemann, Ajay A. Vashisht, James Wohlschlegel y Kymberly Bullough. "Special Delivery: The Role of Iron Chaperones in the Distribution of Iron in Developing Red Cells". Blood 126, n.º 23 (3 de diciembre de 2015): SCI—45—SCI—45. http://dx.doi.org/10.1182/blood.v126.23.sci-45.sci-45.
Texto completoAkcapinar, Gunseli Bayram y Osman Ugur Sezerman. "Computational approaches for de novo design and redesign of metal-binding sites on proteins". Bioscience Reports 37, n.º 2 (27 de marzo de 2017). http://dx.doi.org/10.1042/bsr20160179.
Texto completoAptekmann, A. A., J. Buongiorno, D. Giovannelli, M. Glamoclija, D. U. Ferreiro y Y. Bromberg. "mebipred: identifying metal binding potential in protein sequence". Bioinformatics, 27 de mayo de 2022. http://dx.doi.org/10.1093/bioinformatics/btac358.
Texto completoKlein, Andreas S. y Cathleen Zeymer. "Design and engineering of artificial metalloproteins: from de novo metal coordination to catalysis". Protein Engineering, Design and Selection 34 (2021). http://dx.doi.org/10.1093/protein/gzab003.
Texto completoLu, Chih-Hao, Chih-Chieh Chen, Chin-Sheng Yu, Yen-Yi Liu, Jia-Jun Liu, Sung-Tai Wei y Yu-Feng Lin. "MIB2: Metal ion-binding site prediction and modeling server". Bioinformatics, 29 de julio de 2022. http://dx.doi.org/10.1093/bioinformatics/btac534.
Texto completoAnirudhan, Athira, Paola Isabel Angulo-Bejarano, Prabu Paramasivam, Kalaivani Manokaran, S. Manjunath Kamath, Ram Murugesan, Ashutosh Sharma y Shiek S. S. J. Ahmed. "RPL6: A Key Molecule Regulating Zinc- and Magnesium-Bound Metalloproteins of Parkinson’s Disease". Frontiers in Neuroscience 15 (11 de marzo de 2021). http://dx.doi.org/10.3389/fnins.2021.631892.
Texto completoRoumenina, Lubka T. y Jordan D. Dimitrov. "Assessment of the breadth of binding promiscuity of heme towards human proteins". Biological Chemistry, 18 de octubre de 2022. http://dx.doi.org/10.1515/hsz-2022-0226.
Texto completoRoy, Parthajit y Dhananjay Bhattacharyya. "MetBP: A Software Tool for Detection of Interaction between Metal Ion-RNA Base Pairs". Bioinformatics, 13 de junio de 2022. http://dx.doi.org/10.1093/bioinformatics/btac392.
Texto completoBellotti, Denise, Magdalena Rowińska-Żyrek y Maurizio Remelli. "How Zinc-binding Systems, Expressed by Human Pathogens, Acquire Zinc from the Colonized Host Environment: A Critical Review on Zincophores". Current Medicinal Chemistry 28 (14 de mayo de 2021). http://dx.doi.org/10.2174/1389200222666210514012945.
Texto completoTaherkhani, Amir, Shirin Moradkhani, Athena Orangi, Alireza Jalalvand y Zahra Khamverdi. "Molecular docking study of flavonoid compounds for possible matrix metalloproteinase-13 inhibition". Journal of Basic and Clinical Physiology and Pharmacology, 11 de diciembre de 2020. http://dx.doi.org/10.1515/jbcpp-2020-0036.
Texto completoHirakawa, Yoshihisa, Miki Senda, Kodai Fukuda, Hong Yang Yu, Masaki Ishida, Masafumi Taira, Kazushi Kinbara y Toshiya Senda. "Characterization of a novel type of carbonic anhydrase that acts without metal cofactors". BMC Biology 19, n.º 1 (18 de mayo de 2021). http://dx.doi.org/10.1186/s12915-021-01039-8.
Texto completo