Literatura académica sobre el tema "Biochemical Science"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Biochemical Science".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Biochemical Science"
Larsson, G., S. B. Jørgensen, M. N. Pons, B. Sonnleitner, A. Tijsterman y N. Titchener-Hooker. "Biochemical engineering science". Journal of Biotechnology 59, n.º 1-2 (diciembre de 1997): 3–9. http://dx.doi.org/10.1016/s0168-1656(97)00158-2.
Texto completoWeuster-Botz, Dirk. "Biochemical engineering science". Bioprocess and Biosystems Engineering 31, n.º 3 (20 de marzo de 2008): 153–54. http://dx.doi.org/10.1007/s00449-008-0210-z.
Texto completoBayer, Karl y Alois Jungbauer. "Advances in biochemical engineering science". Journal of Biotechnology 132, n.º 2 (octubre de 2007): 97–98. http://dx.doi.org/10.1016/j.jbiotec.2007.09.006.
Texto completoWhitehead, P. H. "Biochemical techniques in forensic science". Trends in Biochemical Sciences 10, n.º 8 (agosto de 1985): 299–302. http://dx.doi.org/10.1016/0968-0004(85)90167-7.
Texto completoAmato, I. "One-pot biochemical cookery". Science 257, n.º 5076 (11 de septiembre de 1992): 1481. http://dx.doi.org/10.1126/science.1523406.
Texto completoFerreira, Pedro. "Biochemical Society Science Communication Prize 2021". Biochemist 44, n.º 1 (18 de enero de 2022): 27. http://dx.doi.org/10.1042/bio_2021_203.
Texto completoHeath, Catherine. "Biochemical Society Science Communication Prize 2022". Biochemist 44, n.º 5 (31 de octubre de 2022): 19–20. http://dx.doi.org/10.1042/bio_2022_131.
Texto completoAires‐Barros, Raquel, Ana M. Azevedo y Guilherme N. M. Ferreira. "Biochemical Engineering Science—Sustainable Processes and Economies". Biotechnology Journal 14, n.º 8 (29 de julio de 2019): 1900276. http://dx.doi.org/10.1002/biot.201900276.
Texto completoUmer, Muhammad, Saba Shabbir, Neelam Chaudhary, Qaiser Hussain, Shabbar Abbas, Muhammad Inam Afzal y Muhammad Sajjad. "Influence of biochemical treatments on consortium of rhizobacteria and soil fertility". Bangladesh Journal of Botany 49, n.º 3 (20 de septiembre de 2020): 437–44. http://dx.doi.org/10.3329/bjb.v49i3.49329.
Texto completoHao, Gefei y Guangfu Yang. "Pest Control: Risks of Biochemical Pesticides". Science 342, n.º 6160 (15 de noviembre de 2013): 799. http://dx.doi.org/10.1126/science.342.6160.799b.
Texto completoTesis sobre el tema "Biochemical Science"
Drawert, Brian J. "Spatial Stochastic Simulation of Biochemical Systems". Thesis, University of California, Santa Barbara, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3559784.
Texto completoRecent advances in biology have shown that proteins and genes often interact probabilistically. The resulting effects that arise from these stochastic dynamics differ significantly than traditional deterministic formulations, and have biologically significant ramifications. This has led to the development of computational models of the discrete stochastic biochemical pathways found in living organisms. These include spatial stochastic models, where the physical extent of the domain plays an important role; analogous to traditional partial differential equations.
Simulation of spatial stochastic models is a computationally intensive task. We have developed a new algorithm, the Diffusive Finite State Projection (DFSP) method for the efficient and accurate simulation of stochastic spatially inhomogeneous biochemical systems. DFSP makes use of a novel formulation of Finite State Projection (FSP) to simulate diffusion, while reactions are handled by the Stochastic Simulation Algorithm (SSA). Further, we adapt DFSP to three dimensional, unstructured, tetrahedral meshes in inclusion in the mature and widely usable systems biology modeling software URDME, enabling simulation of the complex geometries found in biological systems. Additionally, we extend DFSP with adaptive error control and a highly efficient parallel implementation for the graphics processing units (GPU).
In an effort to understand biological processes that exhibit stochastic dynamics, we have developed a spatial stochastic model of cellular polarization. Specifically we investigate the ability of yeast cells to sense a spatial gradient of mating pheromone and respond by forming a projection in the direction of the mating partner. Our results demonstrates that higher levels of stochastic noise results in increased robustness, giving support to a cellular model where noise and spatial heterogeneity combine to achieve robust biological function. This also highlights the importance of spatial stochastic modeling to reproduce experimental observations.
Barb, Jessica Gaus. "Biochemical, Genetic, and Cytogenetic Studies of Stokesia laevis (Stokes Aster)". NCSU, 2007. http://www.lib.ncsu.edu/theses/available/etd-11302007-145604/.
Texto completoEdwards, Lorraine Katy. "Biochemical characterization of mammalian high mobility group protein A2". FIU Digital Commons, 2006. http://digitalcommons.fiu.edu/etd/3118.
Texto completoMistry, Dharmit. "Mechanistic studies of some chemical and biochemical reactions". Thesis, University of Huddersfield, 2014. http://eprints.hud.ac.uk/id/eprint/23444/.
Texto completoHart, Jaynee E. "Biochemical and genetic approaches to modulate phototropin photoreceptor sensitivity". Thesis, University of Glasgow, 2018. http://theses.gla.ac.uk/30991/.
Texto completoThis lays the groundwork for extending the increased sensitivity observed in response to pulses in the photocycle mutants to responses other phot1-mediated responses, and for integrating new models of suppression of phot1 activity into our framework for phot1 activation and signaling.
Khartabil, Rana. "User-centered design and evaluation of a dynamic biochemical pathway visualization tool". Thesis, University of Ottawa (Canada), 2005. http://hdl.handle.net/10393/26944.
Texto completoWoo, Sung Sik Ph D. Massachusetts Institute of Technology. "Fast simulation of stochastic biochemical reaction networks on cytomorphic chips". Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/107292.
Texto completoThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 169-181).
The large-scale simulation of biochemical reaction networks in cells is important in pathway discovery in medicine, in analyzing complex cell function in systems biology, and in the design of synthetic biological circuits in living cells. However, cells can undergo many trillions of reactions over just an hour with multi-scale interacting feedback loops that manifest complex dynamics; their pathways exhibit non-modular behavior or loading; they exhibit high levels of stochasticity (noise) that require ex- pensive Gillespie algorithms and random-number generation for accurate simulations; and, they routinely operate with nonlinear statics and dynamics. Hence, such simulations are extremely computationally intensive and have remained an important bottleneck in computational biology over decades. By exploiting common mathematical laws between electronics and chemistry, this thesis demonstrates that digitally programmable analog integrated-circuit 'cytomorphic' chips can efficiently run stochastic simulations of complex molecular reaction networks in cells. In a proof-of-concept demonstration, we show that 0.35 [mu]m BiC- MOS cytomorphic gene and protein chips that interact via molecular data packets with FPGAs (Field Programmable Gate Arrays) to simulate networks involving up to 1,400 biochemical reactions can achieve a 700x speedup over COPASI, an efficient bio- chemical network simulator. They can also achieve a 30,000x speedup over MATLAB. The cytomorphic chips operate over five orders of magnitude of input concentration; they enable low-copy-number stochastic simulations by amplifying analog thermal noise that is consistent with Gillespie simulations; they represent non-modular load- ing effects and complex dynamics; and, they simulate zeroth, first, and second-order linear and nonlinear gene-protein networks with arbitrary parameters and network connectivity that can be flexibly digitally programmed. We demonstrate successful stochastic simulation of a p53 cancer pathway and glycolytic oscillations that are consistent with results obtained from conventional digital computer simulations, which are based on experimental data. We show that unlike conventional digital solutions, an increase in network scale or molecular population size does not compromise the simulation speed and accuracy of our completely parallel cytomorphic system. Thus, commonly used circuit improvements to future chips in our digital-to-analog converters, noise generators, and biasing circuits can enable further orders of magnitude of speedup, estimated to be a million fold for large-scale networks.
by Sung Sik Woo.
Ph. D.
Pérez, Verona Isabel Cristina. "Approaches for the exact reduction of large-scale biochemical models". Thesis, IMT Alti Studi Lucca, 2020. http://e-theses.imtlucca.it/303/1/P%C3%A9rezVerona_phdthesis.pdf.
Texto completoSantra, Tapesh. "Evolutionarily stable and fragile modules of yeast biochemical network". Thesis, University of Glasgow, 2011. http://theses.gla.ac.uk/2644/.
Texto completoRoyle, Christopher. "Physiological and biochemical responses to frequent milking in dairy cows". Thesis, University of Nottingham, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.385209.
Texto completoLibros sobre el tema "Biochemical Science"
Alberty, Robert A. Biochemical Thermodynamics. New York: John Wiley & Sons, Ltd., 2006.
Buscar texto completoTryptophan: Biochemical and health implications. Boca Raton: CRC Press, 2002.
Buscar texto completoEuropean, Symposium on Biochemical Engineering Science (1st 1996 Dublin City University Ireland). 1st European Symposium on Biochemical Engineering Science: Proceedings of the 1st European Symposium on Biochemical Engineering Science. (Dublin): (ESBES Secretariat, Dublin City University), 1996.
Buscar texto completoSchügerl, K., A. P. Zeng, J. G. Aunins, A. Bader, W. Bell, H. Biebl, M. Biselli et al., eds. Tools and Applications of Biochemical Engineering Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45736-4.
Texto completoAlberty, Robert A. Thermodynamics of Biochemical Reactions. New York: John Wiley & Sons, Ltd., 2005.
Buscar texto completoThermodynamics of biochemical reactions. Cambridge, MA: Massachusetts Institute of Technology, 2003.
Buscar texto completo1944-, Harrison Roger G., ed. Bioseparations science and engineering. New York: Oxford University Press, 2003.
Buscar texto completoPagliarani, Alessandra. Biochemical and Biological Effects of Organotins. Sharjah: Bentham Science Publishers, 2012.
Buscar texto completoAvnir, David y Sergei Braun, eds. Biochemical Aspects of Sol-Gel Science and Technology. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1429-5.
Texto completoBrown, S. D. Comprehensive chemometrics: Chemical and biochemical data analysis. Editado por Sarabia L. A, Trygg Johan y ScienceDirect (Online service). Amsterdam: Elsevier, 2009.
Buscar texto completoCapítulos de libros sobre el tema "Biochemical Science"
Elkington, Bethany Gwen, Djaja Djendoel Soejarto y Kongmany Sydara. "Biochemical Validation". En SpringerBriefs in Plant Science, 35–45. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10656-4_3.
Texto completoKelle, Alexander, Kathryn Nixdorff y Malcolm Dando. "Science, Technology and the CW Prohibition Regime". En Controlling Biochemical Weapons, 10–34. London: Palgrave Macmillan UK, 2006. http://dx.doi.org/10.1057/9780230503496_2.
Texto completoKelle, Alexander, Kathryn Nixdorff y Malcolm Dando. "Science, Technology and the BW Prohibition Regime". En Controlling Biochemical Weapons, 35–67. London: Palgrave Macmillan UK, 2006. http://dx.doi.org/10.1057/9780230503496_3.
Texto completoEhrenfeucht, Andrzej y Grzegorz Rozenberg. "Biochemical Reactions as Computations". En Lecture Notes in Computer Science, 672–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73001-9_70.
Texto completoFormighieri, Cinzia. "Downstream Biochemical Reactions: Carbon Assimilation". En SpringerBriefs in Environmental Science, 59–63. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16730-5_12.
Texto completoKatz, Evgeny, Jan Halámek, Lenka Halámková, Saira Bakshi, Juliana Agudelo y Crystal Huynh. "Biochemical Analysis of Biomarkers for Forensic Applications". En Forensic Science, 151–76. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527693535.ch8.
Texto completoSunarharum, Wenny Bekti, Tunjung Mahatmanto, Dego Yusa Ali, Yuniar Ponco Prananto y Paulus Immanuel Nugroho. "Coffee polyphenols: Biochemical, processing, and health insights". En Coffee Science, 99–109. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003043133-9.
Texto completoWinfree, Erik. "Fault-Tolerance in Biochemical Systems". En Lecture Notes in Computer Science, 26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11839132_3.
Texto completoPanteris, Eleftherios, Stephen Swift, Annette Payne y Xiaohui Lui. "Biochemical Pathway Analysis via Signature Mining". En Lecture Notes in Computer Science, 12–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11560500_2.
Texto completoSharma, Suresh D., Arpan R. Bhagat y Salvatore Parisi. "Seasonal Variation and Biochemical Composition of Fishmeal". En SpringerBriefs in Molecular Science, 1–12. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14651-1_1.
Texto completoActas de conferencias sobre el tema "Biochemical Science"
Donnan, Rob y Rostyslav Dubrovka. "Biochemical observational science at THz energies". En 2011 VIII International Conference on Antenna Theory and Techniques (ICATT). IEEE, 2011. http://dx.doi.org/10.1109/icatt.2011.6170706.
Texto completoFainman, Y., L. Pang, B. Slutsky, J. Ptasinski, L. Feng y M. Chen. "Optofluidic Nano-Plasmonics for Biochemical Sensing". En Laser Science. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/ls.2010.ltui1.
Texto completoSaetchnikov, Anton, Vladimir Saetchnikov, Elina Tcherniavskaia y Andreas Ostendorf. "Two-photon polymerization in optical biochemical sensing". En Laser Science and Technology. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/lst.2019.ltu2f.3.
Texto completoOnoe, Hiroaki. "Hydrogel microfibers for biochemical applications". En 2017 International Symposium on Micro-NanoMechatronics and Human Science (MHS). IEEE, 2017. http://dx.doi.org/10.1109/mhs.2017.8305193.
Texto completoWangmo, Chimi y Lena Wiese. "Efficient Subgraph Indexing for Biochemical Graphs". En 11th International Conference on Data Science, Technology and Applications. SCITEPRESS - Science and Technology Publications, 2022. http://dx.doi.org/10.5220/0011350100003269.
Texto completoLin, Ying, Vladimir Ilchenko, Jay Nadeau y Lute Maleki. "Biochemical detection with optical whispering-gallery resonaters". En Lasers and Applications in Science and Engineering, editado por Alexis V. Kudryashov, Alan H. Paxton y Vladimir S. Ilchenko. SPIE, 2007. http://dx.doi.org/10.1117/12.716591.
Texto completoLiu, Xiao-lu, Ying-ying Wang, Wei Ding, Shou-fei Gao, Ling Cao, Xian Feng y Pu Wang. "Liquid-Core Nodeless Anti-Resonant Fiber for Biochemical Sensing". En CLEO: Science and Innovations. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/cleo_si.2017.stu3k.2.
Texto completoShome, Krishanu, David Z. Fang, Maryna N. Kavalenka y Philippe M. Fauchet. "Metallized Ultrathin Nanocrystalline Si Membranes as Biochemical SPR Sensors". En CLEO: Science and Innovations. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/cleo_si.2011.cmn2.
Texto completoNomura, Shin-ichiro M. y Kazunari Akiyoshi. "Lipid-tubular network formation for biochemical reaction". En 2007 International Symposium on Micro-NanoMechatronics and Human Science. IEEE, 2007. http://dx.doi.org/10.1109/mhs.2007.4420874.
Texto completoGuo, L. Jay, Chung-Yen Chao, Wayne Fung y Jun Yang. "Biochemical sensors based on polymer microring resonators". En Optical Science and Technology, the SPIE 49th Annual Meeting, editado por Robert A. Norwood, Manfred Eich y Mark G. Kuzyk. SPIE, 2004. http://dx.doi.org/10.1117/12.581855.
Texto completoInformes sobre el tema "Biochemical Science"
Chamovitz, Daniel A. y Xing-Wang Deng. Developmental Regulation and Light Signal Transduction in Plants: The Fus5 Subunit of the Cop9 Signalosome. United States Department of Agriculture, septiembre de 2003. http://dx.doi.org/10.32747/2003.7586531.bard.
Texto completo