Literatura académica sobre el tema "Biochemical oxygen demand"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Biochemical oxygen demand".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Biochemical oxygen demand"
Morris, K., K. Catterall, H. Zhao, N. Pasco y R. John. "Ferricyanide mediated biochemical oxygen demand–development of a rapid biochemical oxygen demand assay". Analytica Chimica Acta 442, n.º 1 (agosto de 2001): 129–39. http://dx.doi.org/10.1016/s0003-2670(01)01133-3.
Texto completoPasco, N., K. Baronian, C. Jeffries y J. Hay. "Biochemical mediator demand - a novel rapid alternative for measuring biochemical oxygen demand". Applied Microbiology and Biotechnology 53, n.º 5 (15 de mayo de 2000): 613–18. http://dx.doi.org/10.1007/s002530051666.
Texto completoSchreiber, J. D. y E. E. Neumaier. "Biochemical Oxygen Demand of Agricultural Runoff". Journal of Environmental Quality 16, n.º 1 (enero de 1987): 6–10. http://dx.doi.org/10.2134/jeq1987.00472425001600010002x.
Texto completoYang, Z., H. Suzuki, S. Sasaki y I. Karube. "Disposable sensor for biochemical oxygen demand". Applied Microbiology and Biotechnology 46, n.º 1 (20 de agosto de 1996): 10–14. http://dx.doi.org/10.1007/s002530050776.
Texto completoAdrian, Donald Dean, Emerald M. Roider y Thomas G. Sanders. "Oxygen Sag Models for Multiorder Biochemical Oxygen Demand Reactions". Journal of Environmental Engineering 130, n.º 7 (julio de 2004): 784–91. http://dx.doi.org/10.1061/(asce)0733-9372(2004)130:7(784).
Texto completoBristow, J. L. "Biochemical Oxygen Demand by a Simplified Procedure". Water Science and Technology 21, n.º 2 (1 de febrero de 1989): 177–82. http://dx.doi.org/10.2166/wst.1989.0046.
Texto completoZHAO, Limin, Jianbo JIA y Changyu LIU. "Application of Rapid Biochemical Oxygen Demand Biosensor". Acta Agronomica Sinica 29, n.º 7 (2012): 819. http://dx.doi.org/10.3724/sp.j.1095.2012.00493.
Texto completoNakamura, Hideaki, Yuta Abe, Rui Koizumi, Kyota Suzuki, Yotaro Mogi, Takumi Hirayama y Isao Karube. "A chemiluminescence biochemical oxygen demand measuring method". Analytica Chimica Acta 602, n.º 1 (octubre de 2007): 94–100. http://dx.doi.org/10.1016/j.aca.2007.08.050.
Texto completoWu, Hui Xiu, Cui Ling Jiang y Zhong Du. "Long-Term Trends of Water Quality in Upstream of Daling River in China". Advanced Materials Research 599 (noviembre de 2012): 673–77. http://dx.doi.org/10.4028/www.scientific.net/amr.599.673.
Texto completoZhu, Jun-Jie, Lulu Kang y Paul R. Anderson. "Predicting influent biochemical oxygen demand: Balancing energy demand and risk management". Water Research 128 (enero de 2018): 304–13. http://dx.doi.org/10.1016/j.watres.2017.10.053.
Texto completoTesis sobre el tema "Biochemical oxygen demand"
MacPherson, Tara A. "Sediment oxygen demand and biochemical oxygen demand : patterns of oxygen depletion in tidal creek sites /". Electronic version (PDF), 2003. http://dl.uncw.edu/etd/2003/macphersont/taramacpherson.pdf.
Texto completoYung, Kam-shing. "Sediment oxygen demand in coastal waters /". Hong Kong : University of Hong Kong, 1994. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19667656.
Texto completoJordan, Mark. "Activated Sludge Bioassays for Rapid Biochemical Oxygen Demand". Thesis, Griffith University, 2015. http://hdl.handle.net/10072/367704.
Texto completoThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Griffith School of Environment
Science, Environment, Engineering and Technology
Full Text
Trosok, Steve Peter Matyas. "Mediated biochemical oxygen demand biosensors for pulp mill wastewaters". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0030/MQ64470.pdf.
Texto completoYung, Kam-shing y 翁錦誠. "Sediment oxygen demand in coastal waters". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1994. http://hub.hku.hk/bib/B31234562.
Texto completoNarteh, Alexander Tetteh. "Correlation of Fluorescence Spectroscopy and Biochemical Oxygen Demand (BOD5) Using Regression Analysis". BYU ScholarsArchive, 2015. https://scholarsarchive.byu.edu/etd/5567.
Texto completoLatham, Zachary B. "Dissolved oxygen dynamics in the Carson River, Nevada". abstract and full text PDF (free order & download UNR users only), 2005. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1433406.
Texto completoMaguluri, Kanchana. "Nitrification performance of a modified aerated lagoon". Diss., Columbia, Mo. : University of Missouri-Columbia, 2007. http://hdl.handle.net/10355/5098.
Texto completoThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on October 30, 2007) Includes bibliographical references.
Asiedu, Kofi. "Evaluating Biological Treatment Systems: (i) Moving Bed Biofilm Reactor versus Biological Aerated Filtration, and (ii) Sulfide-Induced corrosion in Anaerobic Digester Gas Piping". Thesis, Virginia Tech, 2001. http://hdl.handle.net/10919/35156.
Texto completoThe first section evaluated and compared the performance of a laboratory-scale MBBR and BAF for organic carbon and suspended solids removal. A kinetic study was also performed on the MBBR to evaluate the system performance. The purpose was to recommend one of the systems for the Force Provider project, which provides a containerized "city" for the U.S. Army. The effluent criteria against which the systems were evaluated were total 5-day biochemical oxygen demand (TBOD5) and total suspended solids (TSS) of 30 mg/L each. The report is based on a 5-month laboratory -scale study of the two reactors.
The MBBR performance depended on the percent of media provided in the reactor and the organic loading. At a media volume, which displaced the reactor volume by 40 % (heretofore called 40 % media volume), and surface area loading rate (SALR) of 20 g BOD5/m2-d, the system performance deteriorated with time. At 40 % media volume and SALR below 15 g BOD5/m2-d, the system performance improved but still did not meet effluent criteria or average. TBOD5 reduction was generally poor (approximately 50 %). Soluble BOD5 (SBOD5) concentrations were frequently below 30 mg/L and TSS concentrations were often higher than influent TSS. Overall, TSS wastage from the system (both effluent TSS and intentional wastage) averaged 0.032 kg/d.
BAF system performance was excellent for TBOD5, CBOD5, SBOD5 and TSS removal, and were consistently less that 30 mg/L. Overall TSS wastage from the BAF (both via effluent and backwash) average 0.027 kg/d and was 16 % less than for the MBBR. Based on demonstrated performance, the BAF was the only viable reactor for the project.
Section II of the report focused on possible causes of deposition in an anaerobic digester gas piping at a local wastewater treatment facility (Peppers ferry regional wastewater treatment facility).
Industrial waste input to the treatment facility has increased lately and accounts for 40 % of the plant's wastewater inflow. An industry in Pulaski, VA, Magnox Inc. generates and disposes highly concentrated sodium sulfate, (70,000 mg/L) which is a by-product of its activities, to PFRWTF wastewater influent stream. As a result of Magnox industrial waste input, a pilot study was carried out to determine the effect of its waste on the activated sludge treatment units. Results indicated that Magnox industrial waste input would not have adverse effect on the aeration basins. However production of H2S, which can have effect on the anaerobic digester was reported (Olver Inc., 1995). Field analysis of data reported by Olver Inc. (2000) showed that H2S concentration in PFRWTF anaerobic digester gas was rising. X-ray photoelectron spectroscopy analysis of deposits found in the digester pipe together with results obtained from the laboratory-scale study revealed that iron and sulfur played a role in the deposition in the digester gas pipe. The laboratory scale study revealed that ferrous ion in the digester feed possibly precipitated over 90 % of the hydrogen sulfide gas produced in the digester, thus protecting the digester from adverse effects caused by hydrogen sulfide.
Master of Science
Morris, Kristy y n/a. "Optimisation of the Biocatalytic Component in a Ferricyanide Mediated Approach to Rapid Biochemical Oxygen Demand Analysis". Griffith University. School of Environmental and Applied Science, 2005. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20060906.121244.
Texto completoLibros sobre el tema "Biochemical oxygen demand"
Fitzmaurice, G. Biochemical oxygen demand: Interlaboratory precision test. Dublin: Trinity College, 1987.
Buscar texto completoJustić, Dubravko. Long-term trends of oxygen saturation in the northern Adriatic Sea =: Dugoročni trendovi zasićenja kisikom sjevernog Jadrana. Zagreb: Jugoslavenska akademija znanosti i umjetnosti, 1987.
Buscar texto completoSeminar on Hypoxic and Related Processes in Chesapeake Bay (1987 College Park, Md.). Dissolved oxygen in the Chesapeake Bay: Processes and effects : proceedings of a Seminar on Hypoxic and Related Processes in Chesapeake Bay. College Park, Md: University of Maryland Sea Grant, 1987.
Buscar texto completoSkinner, F. Interpretation of ultimate biochemical oxygen demand data via kinetic curve extrapolation models. Vegreville, Alta: Environmental Technology Division, Alberta Environmental Centre, 1990.
Buscar texto completoFitzmaurice, G. Biochemical oxygen demand: A proposed standard methodology for Irish laboratories (draft). Dublin: Trinity College, University of Dublin, 1987.
Buscar texto completoJobson, Harvey E. Simulating unsteady transport of nitrogen, biochemical oxygen demand, and dissolved oxygen in the Chattahoochee River downstream from Atlanta, Georgia. [Washington, D.C.]: U.S. G.P.O., 1985.
Buscar texto completoPelletier, G. J. Waste load allocations for biochemical oxygen demand for Inland Empire Paper Company. Olympia, Wash: Washington State Dept. of Ecology, 1997.
Buscar texto completoPelletier, G. J. Waste load allocations for biochemical oxygen demand for Inland Empire Paper Company. Olympia, Wash: Washington State Dept. of Ecology, 1997.
Buscar texto completoEdelmann, Patrick. Water quality of Fountain and Monument Creeks, south-central Colorado, with emphasis on relation of water quality to stream classifications. Denver, Colo: U.S. Dept. of the Interior, U.S. Geological Survey, 1991.
Buscar texto completoEdelmann, Patrick. Water quality of Fountain and Monument Creeks, south-central Colorado, with emphasis on relation of water quality to stream classifications. Denver, Colo: U.S. Dept. of the Interior, U.S. Geological Survey, 1991.
Buscar texto completoCapítulos de libros sobre el tema "Biochemical oxygen demand"
Montes, Manuel Flores. "Biochemical Oxygen Demand". En Encyclopedia of Estuaries, 75–76. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-8801-4_167.
Texto completoPatnaik, Pradyot. "Oxygen Demand, Biochemical". En Handbook of Environmental Analysis, 241–46. Third edition. | Boca Raton : Taylor & Francis, CRC Press, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315151946-42.
Texto completoLatif, Usman y Franz L. Dickert. "Biochemical Oxygen Demand (BOD)". En Environmental Analysis by Electrochemical Sensors and Biosensors, 729–34. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1301-5_2.
Texto completoGooch, Jan W. "Biochemical Oxygen Demand (B.O.D.)". En Encyclopedic Dictionary of Polymers, 80. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_1310.
Texto completoJain, Aakanchha, Richa Jain y Sourabh Jain. "BOD (Biochemical Oxygen Demand or Biological Oxygen Demand) Incubator". En Basic Techniques in Biochemistry, Microbiology and Molecular Biology, 3–4. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-4939-9861-6_1.
Texto completoBob, Mustafa. "Effect of Operational Changes in Wastewater Treatment Plants on Biochemical Oxygen Demand and Total Suspended Solid Removal". En Water Resources in Arid Areas: The Way Forward, 407–17. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51856-5_23.
Texto completo"Oxygen Demand, Biochemical". En Handbook of Environmental Analysis. CRC Press, 1997. http://dx.doi.org/10.1201/9781420050608.ch2.17.
Texto completo"Oxygen Demand, Biochemical". En Handbook of Environmental Analysis, 285–91. CRC Press, 2010. http://dx.doi.org/10.1201/b10505-40.
Texto completo"biochemical oxygen demand". En The Fairchild Books Dictionary of Textiles. Fairchild Books, 2021. http://dx.doi.org/10.5040/9781501365072.1537.
Texto completoSingh, Sonika, Jandeep Singh y Harminder Singh. "Chemical oxygen demand and biochemical oxygen demand". En Green Sustainable Process for Chemical and Environmental Engineering and Science, 69–83. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-821883-9.00007-2.
Texto completoActas de conferencias sobre el tema "Biochemical oxygen demand"
Luo, Long. "Biochemical Oxygen Demand Soft Measurement Based On LE-RVM". En 2nd 2016 International Conference on Sustainable Development (ICSD 2016). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/icsd-16.2017.35.
Texto completoRoman, Marius-Daniel, Roxana Mare y Adriana Hadarean. "CONSIDERATIONS REGARDING THE CONTROL OF BIOCHEMICAL OXYGEN DEMAND AND CHEMICAL OXYGEN DEMAND FROM DEJ WASTEWATER TREATMENT PLANT". En International Symposium "The Environment and the Industry". National Research and Development Institute for Industrial Ecology, 2018. http://dx.doi.org/10.21698/simi.2018.fp42.
Texto completoTENEBE, IMOKHAI T., PRAISEGOD CHIDOZIE EMENIKE, DAVID O. OMOLE, NKPA N. OGAREKPE, OMEJE MAXWELL, AIKUOLA A. OLUMUYIWA y OMEJE UCHECHUWU ANNE. "PREDICTING DEGRADATION WITH BIOCHEMICAL OXYGEN DEMAND IN DISINFECTANT-POLLUTED SEWAGE". En WATER AND SOCIETY 2017. Southampton UK: WIT Press, 2017. http://dx.doi.org/10.2495/ws170301.
Texto completoPremanoch, Piyarat. "Short-term biochemical oxygen demand (BODst) estimation using an oxygen uptake rate measurement method". En 2016 Management and Innovation Technology International Conference (MITicon). IEEE, 2016. http://dx.doi.org/10.1109/miticon.2016.8025257.
Texto completoKashem, Md Abul y Masayasu Suzuki. "Optical biosensor chip technology for biochemical oxygen demand monitoring in environmental samples". En 2015 International Conference on Informatics, Electronics and Vision (ICIEV). IEEE, 2015. http://dx.doi.org/10.1109/iciev.2015.7334005.
Texto completoBergstedt, M. y M. Hondzo. "The Effect of Small-Scale Fluid Motion on Biochemical Oxygen Demand (BOD)". En World Water and Environmental Resources Congress 2001. Reston, VA: American Society of Civil Engineers, 2001. http://dx.doi.org/10.1061/40569(2001)13.
Texto completoPhotphanloet, Chadaphim, Weeris Treeratanajaru, Nagul Cooharojananone y Rajalida Lipikorn. "Biochemical oxygen demand prediction for Chaophraya river using alpha-trimmed ARIMA model". En 2016 13th International Joint Conference on Computer Science and Software Engineering (JCSSE). IEEE, 2016. http://dx.doi.org/10.1109/jcsse.2016.7748930.
Texto completoAlewi, H., W. Obeed, M. Abdulridha y G. Ali. "An inquiry into the relationship between water quality parameters: Biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) in Iraqi Southern region". En 2ND INTERNATIONAL CONFERENCE ON ENGINEERING & SCIENCE. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0069000.
Texto completoWang, J. F., C. Bian, J. H. Tong, J. Z. Sun, Y. Li, H. Zhang y S. H. Xia. "A biological/electrochemical reservoirs integrated microsensor for the determination of biochemical oxygen demand". En 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII). IEEE, 2013. http://dx.doi.org/10.1109/transducers.2013.6627215.
Texto completoSuliyanto. "Biochemical Oxygen Demand Level Modeling in Surabaya River using Approach of Cokriging Method". En International Conference on Mathematics and Islam. SCITEPRESS - Science and Technology Publications, 2018. http://dx.doi.org/10.5220/0008517100520059.
Texto completoInformes sobre el tema "Biochemical oxygen demand"
Wyderski, Mary. Demonstrate a Low Biochemical Oxygen Demand Aircraft Deicing Fluid. Fort Belvoir, VA: Defense Technical Information Center, junio de 2013. http://dx.doi.org/10.21236/ada606416.
Texto completoWyderski, Mary y James Davila. Demonstrate a Low Biochemical Oxygen Demand Aircraft Deicing Fluid. Fort Belvoir, VA: Defense Technical Information Center, marzo de 2013. http://dx.doi.org/10.21236/ada600423.
Texto completoChapter A7. Section 7.0. Five-Day Biochemical Oxygen Demand. US Geological Survey, 2003. http://dx.doi.org/10.3133/twri09a7.0.
Texto completoSimulation of temperature, nutrients, biochemical oxygen demand, and dissolved oxygen in the Ashley River near Charleston, South Carolina. US Geological Survey, 1998. http://dx.doi.org/10.3133/wri984150.
Texto completoSimulation of Temperature, Nutrients, Biochemical Oxygen Demand, and Dissolved Oxygen in the Catawba River, South Carolina, 1996-97. US Geological Survey, 2003. http://dx.doi.org/10.3133/wri034092.
Texto completoSimulating unsteady transport of nitrogen, biochemical oxygen demand, and dissolved oxygen in the Chattahoochee River downstream from Atlanta, Georgia. US Geological Survey, 1985. http://dx.doi.org/10.3133/wsp2264.
Texto completoSimulation of temperature, nutrients, biochemical oxygen demand, and dissolved oxygen in the Cooper and Wando rivers near Charleston, South Carolina, 1992-95. US Geological Survey, 1997. http://dx.doi.org/10.3133/wri974151.
Texto completoCharacterization of water quality and simulation of temperature, nutrients, biochemical oxygen demand, and dissolved oxygen in the Wateree River, South Carolina, 1996-98. US Geological Survey, 2000. http://dx.doi.org/10.3133/wri994234.
Texto completo