Artículos de revistas sobre el tema "Biocatalytic component"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Biocatalytic component".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Ion, Sabina, Florentina Olănescu, Florina Teodorescu, Robert Tincu, Daniela Gheorghe, Vasile I. Pârvulescu y Mădălina Tudorache. "DES-Based Biocatalysis as a Green Alternative for the l-menthyl Ester Production Based on l-menthol Acylation". Molecules 27, n.º 16 (18 de agosto de 2022): 5273. http://dx.doi.org/10.3390/molecules27165273.
Texto completoAlotaibi, Mohammed, Jinesh C. Manayil, Gillian M. Greenway, Stephen J. Haswell, Stephen M. Kelly, Adam F. Lee, Karen Wilson y Georgios Kyriakou. "Lipase immobilised on silica monoliths as continuous-flow microreactors for triglyceride transesterification". Reaction Chemistry & Engineering 3, n.º 1 (2018): 68–74. http://dx.doi.org/10.1039/c7re00162b.
Texto completoHe, Wei-Xun, Xiu Xing, Zeng-Jie Yang, Yuan Yu, Na Wang y Xiao-Qi Yu. "Biocatalytic One-Pot Three-Component Synthesis of Indoloquinolizines with High Diastereoselectivity". Catalysis Letters 149, n.º 2 (21 de enero de 2019): 638–43. http://dx.doi.org/10.1007/s10562-019-02660-7.
Texto completoZhou, Hangyu, Jing Zhao, Aitao Li y Manfred T. Reetz. "Chemical and Biocatalytic Routes to Arbutin †". Molecules 24, n.º 18 (11 de septiembre de 2019): 3303. http://dx.doi.org/10.3390/molecules24183303.
Texto completoLv, Y. M., P. Laborda, K. Huang, Z. P. Cai, M. Wang, A. M. Lu, C. Doherty, L. Liu, S. L. Flitsch y J. Voglmeir. "Highly efficient and selective biocatalytic production of glucosamine from chitin". Green Chemistry 19, n.º 2 (2017): 527–35. http://dx.doi.org/10.1039/c6gc02910h.
Texto completoHeine, Thomas, Willem van Berkel, George Gassner, Karl-Heinz van Pée y Dirk Tischler. "Two-Component FAD-Dependent Monooxygenases: Current Knowledge and Biotechnological Opportunities". Biology 7, n.º 3 (2 de agosto de 2018): 42. http://dx.doi.org/10.3390/biology7030042.
Texto completoChhaya, Urvish y Snehal Ingale. "Micellar Enzymology- Chemistry and Applications". Open Biotechnology Journal 10, n.º 1 (11 de noviembre de 2016): 326–34. http://dx.doi.org/10.2174/1874070701610010326.
Texto completoShrivas, Prabhakar y Umesh Pratap. "Biocatalytic one-pot three-component synthesis of 4H-chromene derivatives in non-aqueous medium". Chemical Papers 73, n.º 5 (10 de enero de 2019): 1301–7. http://dx.doi.org/10.1007/s11696-018-00679-5.
Texto completoZumbrägel, Nadine y Harald Gröger. "Merging Heterocyclic Chemistry and Biocatalysis in One-Pot Processes through Compartmentalization of the Reaction Steps". Bioengineering 5, n.º 3 (1 de agosto de 2018): 60. http://dx.doi.org/10.3390/bioengineering5030060.
Texto completoHu, Ke Shun, Chong Le Chen, Huan Ru Ding, Tian Yu Wang, Qin Zhu, Yi Chen Zhou, Jia Min Chen et al. "Production of Salvianic Acid A from l-DOPA via Biocatalytic Cascade Reactions". Molecules 27, n.º 18 (18 de septiembre de 2022): 6088. http://dx.doi.org/10.3390/molecules27186088.
Texto completoFuruya, Toshiki, Masahiko Sai y Kuniki Kino. "Biocatalytic synthesis of 3,4,5,3′,5′-pentahydroxy-trans-stilbene from piceatannol by two-component flavin-dependent monooxygenase HpaBC". Bioscience, Biotechnology, and Biochemistry 80, n.º 1 (19 de agosto de 2015): 193–98. http://dx.doi.org/10.1080/09168451.2015.1072463.
Texto completoHe, Tao, Qing-Qing Zeng, Da-Cheng Yang, Yan-Hong He y Zhi Guan. "Biocatalytic one-pot three-component synthesis of 3,3′-disubstituted oxindoles and spirooxindole pyrans using α-amylase from hog pancreas". RSC Advances 5, n.º 47 (2015): 37843–52. http://dx.doi.org/10.1039/c4ra16825a.
Texto completoKarkeszová, Klaudia, Viera Illeová, Peter Kis, Vladimír Mastihuba y Milan Polakovič. "Apiin-induction of β-apiosidase production by Aspergillus sp. strains". Acta Chimica Slovaca 13, n.º 1 (1 de abril de 2020): 72–76. http://dx.doi.org/10.2478/acs-2020-0011.
Texto completoNcube, Efficient N., Paul A. Steenkamp, Chris W. van der Westhuyzen, Lucia H. Steenkamp y Ian A. Dubery. "Metabolomics-Guided Analysis of the Biocatalytic Conversion of Sclareol to Ambradiol by Hyphozyma roseoniger". Catalysts 12, n.º 1 (4 de enero de 2022): 55. http://dx.doi.org/10.3390/catal12010055.
Texto completoMadding, Lara S., Joshua K. Michel, Keith R. Shockley, Shannon B. Conners, Kevin L. Epting, Matthew R. Johnson y Robert M. Kelly. "Role of the β1 Subunit in the Function and Stability of the 20S Proteasome in the Hyperthermophilic Archaeon Pyrococcus furiosus". Journal of Bacteriology 189, n.º 2 (17 de noviembre de 2006): 583–90. http://dx.doi.org/10.1128/jb.01382-06.
Texto completoHe, Tao, Qing-Qing Zeng, Da-Cheng Yang, Yan-Hong He y Zhi Guan. "ChemInform Abstract: Biocatalytic One-Pot Three-Component Synthesis of 3,3′-Disubstituted Oxindoles and Spirooxindole Pyrans Using α-Amylase from Hog Pancreas." ChemInform 46, n.º 36 (20 de agosto de 2015): no. http://dx.doi.org/10.1002/chin.201536142.
Texto completoZhan, Peng, Jingjing Sun, Fang Wang, Lin Zhang y Jienan Chen. "Process optimization of β-glucosidase production by a mutant strain, Aspergillus niger C112". BioResources 12, n.º 4 (11 de octubre de 2017): 8937–52. http://dx.doi.org/10.15376/biores.12.4.8937-8952.
Texto completoVasilenko, Violetta, Irina Arkadeva, Vera Bogdanovskaya, George Sudarev, Sergei Kalenov, Marco Vocciante y Eleonora Koltsova. "Glucose-Oxygen Biofuel Cell with Biotic and Abiotic Catalysts: Experimental Research and Mathematical Modeling". Energies 13, n.º 21 (28 de octubre de 2020): 5630. http://dx.doi.org/10.3390/en13215630.
Texto completoXi, Wang, Fang Kong, Joo Chuan Yeo, Longteng Yu, Surabhi Sonam, Ming Dao, Xiaobo Gong y Chwee Teck Lim. "Soft tubular microfluidics for 2D and 3D applications". Proceedings of the National Academy of Sciences 114, n.º 40 (18 de septiembre de 2017): 10590–95. http://dx.doi.org/10.1073/pnas.1712195114.
Texto completoAngajala, Gangadhara, Valmiki Aruna, Pasupala Pavan y Pulikanti Guruprasad Reddy. "Biocatalytic one pot three component approach: Facile synthesis, characterization, molecular modelling and hypoglycemic studies of new thiazolidinedione festooned quinoline analogues catalyzed by alkaline protease from Aspergillus niger". Bioorganic Chemistry 119 (febrero de 2022): 105533. http://dx.doi.org/10.1016/j.bioorg.2021.105533.
Texto completoKorotkova, O. G., E. A. Rubtsova, I. A. Shashkov, A. A. Volchok, E. G. Kondratieva, О. А. Sinitsyna, A. M. Rozhkova et al. "Comparison Analysis of the Composition and Properties of Fodder Enzyme Preparations". Kataliz v promyshlennosti 18, n.º 4 (23 de julio de 2018): 72–78. http://dx.doi.org/10.18412/1816-0387-2018-4-72-78.
Texto completoШиманская, Елена Игоревна, Ольга Валентиновна Гребенникова y Анастасия Евгеньевна Филатова. "BIOCATALYTIC PRETREATMENT OF LIGNIN-CONTAINING RAW MATERIALS". Вестник Тверского государственного университета. Серия: Химия, n.º 4(46) (27 de diciembre de 2021): 22–28. http://dx.doi.org/10.26456/vtchem2021.4.3.
Texto completoPatel, Mitul P., Nathaneal T. Green, Jacob K. Burch, Kimberly A. Kew y Robert M. Hughes. "Screening of Biocatalysts for Synthesis of the Wieland–Miescher Ketone". Catalysts 10, n.º 9 (16 de septiembre de 2020): 1063. http://dx.doi.org/10.3390/catal10091063.
Texto completoChowdhury, Avisha, Debarati Mitra y Dipa Biswas. "Synthesis of biolubricant components from waste cooking oil using a biocatalytic route". Environmental Progress & Sustainable Energy 33, n.º 3 (3 de octubre de 2013): 933–40. http://dx.doi.org/10.1002/ep.11866.
Texto completoVitol, I. S., E. P. Meleshkina y G. N. Pankratov. "Bran from composite grain mixture as an object of deep processing. Part 1. Protein-proteinase complex". Food systems 5, n.º 4 (8 de enero de 2023): 282–88. http://dx.doi.org/10.21323/2618-9771-2022-5-4-282-288.
Texto completoMaslova, Olga, Olga Senko, Argam Akopyan, Sergey Lysenko, Alexander Anisimov y Elena Efremenko. "Nanocatalysts for Oxidative Desulfurization of Liquid Fuel: Modern Solutions and the Perspectives of Application in Hybrid Chemical-Biocatalytic Processes". Catalysts 11, n.º 9 (21 de septiembre de 2021): 1131. http://dx.doi.org/10.3390/catal11091131.
Texto completoMayer, Sandra F., Harald Mang, Andreas Steinreiber, Robert Saf y Kurt Faber. "Asymmetric total synthesis of (+)-exo-brevicomin based on enantioconvergent biocatalytic hydrolysis of an alkene-functionalized 2,3-disubstituted epoxide". Canadian Journal of Chemistry 80, n.º 4 (1 de abril de 2002): 362–69. http://dx.doi.org/10.1139/v02-037.
Texto completoAbul-Haija, Yousef M., Sangita Roy, Pim W. J. M. Frederix, Nadeem Javid, Vineetha Jayawarna y Rein V. Ulijn. "Biocatalysis: Biocatalytically Triggered Co-Assembly of Two-Component Core/Shell Nanofibers (Small 5/2014)". Small 10, n.º 5 (marzo de 2014): 1028. http://dx.doi.org/10.1002/smll.201470032.
Texto completoFleming, Barry D., Jie Zhang, Alan M. Bond, Stephen G. Bell y Luet-Lok Wong. "Separation of Electron-Transfer and Coupled Chemical Reaction Components of Biocatalytic Processes Using Fourier Transform ac Voltammetry". Analytical Chemistry 77, n.º 11 (junio de 2005): 3502–10. http://dx.doi.org/10.1021/ac048151y.
Texto completoPark, Yeo, Hee Yoo, Min Song, Dong-Heon Lee y Seung Lee. "Biocatalytic Oxidations of Substrates through Soluble Methane Monooxygenase from Methylosinus sporium 5". Catalysts 8, n.º 12 (26 de noviembre de 2018): 582. http://dx.doi.org/10.3390/catal8120582.
Texto completoYu, Hui-Lei, Jian-He Xu, Yu-Xiao Wang, Wen-Ya Lu y Guo-Qiang Lin. "Neural pharmacological activity was detected among components of glycoconjugates array prepared by combinatorial biocatalysis". Journal of Biotechnology 136 (octubre de 2008): S430—S431. http://dx.doi.org/10.1016/j.jbiotec.2008.07.997.
Texto completoKarnišová Potocká, Elena, Mária Mastihubová y Vladimír Mastihuba. "Apiose-Relevant Glycosidases". Catalysts 11, n.º 10 (18 de octubre de 2021): 1251. http://dx.doi.org/10.3390/catal11101251.
Texto completoNicotra, Francesco y Mary Garson. "Preface". Pure and Applied Chemistry 80, n.º 8 (1 de enero de 2008): vi. http://dx.doi.org/10.1351/pac20088008vi.
Texto completoGuo, Ziyi, Jian Liu, Da-Wei Wang, Jiangtao Xu y Kang Liang. "Biofriendly micro/nanomotors operating on biocatalysis: from natural to biological environments". Biophysics Reports 6, n.º 5 (octubre de 2020): 179–92. http://dx.doi.org/10.1007/s41048-020-00119-6.
Texto completoШиманская, Елена Игоревна, Ольга Валентиновна Гребенникова y Анастасия Евгеньевна Филатова. "CATALYTIC HYDROGENOLYSIS OF LIGNIN PEROXIDASE OXIDATION PRODUCTS". Вестник Тверского государственного университета. Серия: Химия, n.º 4(46) (27 de diciembre de 2021): 29–36. http://dx.doi.org/10.26456/vtchem2021.4.4.
Texto completoLiu, Wancang, Haibo Xiang, Tao Zhang, Xu Pang, Jing Su, Hongyu Liu, Baiping Ma y Liyan Yu. "Screening and Selection of a New Medium for Diosgenin Production via Microbial Biocatalysis of Fusarium sp." Pharmaceuticals 14, n.º 5 (21 de abril de 2021): 390. http://dx.doi.org/10.3390/ph14050390.
Texto completoNcube, Efficient N., Lucia Steenkamp y Ian A. Dubery. "Ambrafuran (AmbroxTM) Synthesis from Natural Plant Product Precursors". Molecules 25, n.º 17 (25 de agosto de 2020): 3851. http://dx.doi.org/10.3390/molecules25173851.
Texto completoAlissandratos, Apostolos y Christopher J. Easton. "Biocatalysis for the application of CO2as a chemical feedstock". Beilstein Journal of Organic Chemistry 11 (1 de diciembre de 2015): 2370–87. http://dx.doi.org/10.3762/bjoc.11.259.
Texto completoZhao, Man, Wenyi Wang, Lei Wei, Peng Chen, Li Peng, Zhen Qin, Fengjie Yuan, Zhao Wang y Xiangxian Ying. "The Evolution and Biocatalysis of FAD2 Indicate Its Correlation to the Content of Seed Oil in Plants". International Journal of Molecular Sciences 20, n.º 4 (15 de febrero de 2019): 849. http://dx.doi.org/10.3390/ijms20040849.
Texto completoHu, Yumei, Jian Min, Yingying Qu, Xiao Zhang, Juankun Zhang, Xuejing Yu y Longhai Dai. "Biocatalytic Synthesis of Calycosin-7-O-β-D-Glucoside with Uridine Diphosphate–Glucose Regeneration System". Catalysts 10, n.º 2 (20 de febrero de 2020): 258. http://dx.doi.org/10.3390/catal10020258.
Texto completoSokolova, Elena Nikolaevna, Tat'yana Vladimirovna Yuraskina, Yuliya Aleksandrovna Borshcheva, Natal'ya Aleksandrovna Fursova, Anton Yur'yevich Sharikov y Elena Mikhailovna Serba. "INFLUENCE OF BIOTECHNOLOGICAL FACTORS ON THE YIELD OF BIOLOGICALLY ACTIVE COMPOUNDS FROM SORBUS AUCUPARIA". chemistry of plant raw material, n.º 3 (27 de septiembre de 2021): 291–300. http://dx.doi.org/10.14258/jcprm.2021037439.
Texto completoDiaz, Dennis, Andrew Care y Anwar Sunna. "Bioengineering Strategies for Protein-Based Nanoparticles". Genes 9, n.º 7 (23 de julio de 2018): 370. http://dx.doi.org/10.3390/genes9070370.
Texto completoReznichenko, Kristina y Galina Aleynikova. "Effect of enzyme preparations used for oak wood biocatalysis on the set of highly volatile components of aged brandy distillates". E3S Web of Conferences 285 (2021): 05002. http://dx.doi.org/10.1051/e3sconf/202128505002.
Texto completoLétisse, Fabien, Sylvain Lamare, Marie-Dominique Legoy y Marianne Graber. "Solid/gas biocatalysis: an appropriate tool to study the influence of organic components on kinetics of lipase-catalyzed alcoholysis". Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1652, n.º 1 (noviembre de 2003): 27–34. http://dx.doi.org/10.1016/s1570-9639(03)00262-0.
Texto completoРезниченко, К. В., И. В. Оселедцева, Г. Ю. Алейникова y Е. В. Глоба. "Determining the process parameters of biocatalytic activation of oak wood for aging brandy distillates". Magarach Vinogradstvo i Vinodelie, n.º 2(116) (25 de junio de 2021): 201–6. http://dx.doi.org/10.35547/im.2021.23.2.015.
Texto completoKamezawa, Makoto, Hojun Tachibana, Takehiko Ohtani y Yoshinobu Naoshima. "Biocatalytic synthesis of (S)-2-tridecanyl acetate and (S)-2-pentadecanyl acetate, aggregation pheromone components ofDrosophila mulleri andD. busckii, by enantioselective hydrolysis with lipase". Journal of Chemical Ecology 20, n.º 5 (mayo de 1994): 1057–61. http://dx.doi.org/10.1007/bf02059742.
Texto completoD. Sivaselvi, N. Vijayakumar, R. Jayaprakash, V. Amalan, R. Rajeswari y M. Reddi Nagesh. "BIOCATALYTIC EFFECT OF Simarouba glauca LEAF PHYTOCHEMICALS ON BIOLOGICALLY ACTIVE SILVER NANOPARTICLES YIELD AND ABTS ANTIOXIDANT ACTIVITY: GREEN SYNTHESIS". RASAYAN Journal of Chemistry 15, n.º 02 (2022): 1166–73. http://dx.doi.org/10.31788/rjc.2022.1526796.
Texto completoGeiser, Elena, Michèle Reindl, Lars M. Blank, Michael Feldbrügge, Nick Wierckx y Kerstin Schipper. "Activating Intrinsic Carbohydrate-Active Enzymes of the Smut Fungus Ustilago maydis for the Degradation of Plant Cell Wall Components". Applied and Environmental Microbiology 82, n.º 17 (17 de junio de 2016): 5174–85. http://dx.doi.org/10.1128/aem.00713-16.
Texto completoRozhin, Petr, Jada Abdel Monem Gamal, Silvia Giordani y Silvia Marchesan. "Carbon Nanomaterials (CNMs) and Enzymes: From Nanozymes to CNM-Enzyme Conjugates and Biodegradation". Materials 15, n.º 3 (28 de enero de 2022): 1037. http://dx.doi.org/10.3390/ma15031037.
Texto completoZhang, Sufeng, Yongshe Xu, Dongyan Zhao, Wenqiang Chen, Hao Li y Chen Hou. "Preparation of Magnetic CuFe2O4@Ag@ZIF-8 Nanocomposites with Highly Catalytic Activity Based on Cellulose Nanocrystals". Molecules 25, n.º 1 (28 de diciembre de 2019): 124. http://dx.doi.org/10.3390/molecules25010124.
Texto completo