Literatura académica sobre el tema "Biobased chemicals"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Biobased chemicals".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Biobased chemicals"
TULLO, ALEXANDER H. "CATALYZING BIOBASED CHEMICALS". Chemical & Engineering News 88, n.º 38 (20 de septiembre de 2010): 15–17. http://dx.doi.org/10.1021/cen-v088n038.p015.
Texto completode Regil, Rubén y Georgina Sandoval. "Biocatalysis for Biobased Chemicals". Biomolecules 3, n.º 4 (17 de octubre de 2013): 812–47. http://dx.doi.org/10.3390/biom3040812.
Texto completoMCCOY, MICHAEL. "COMPANIES ADVANCE BIOBASED CHEMICALS". Chemical & Engineering News Archive 89, n.º 17 (25 de abril de 2011): 8. http://dx.doi.org/10.1021/cen-v089n017.p008.
Texto completoMichael McCoy. "Cargill, Virent eye biobased chemicals". C&EN Global Enterprise 98, n.º 39 (12 de octubre de 2020): 15. http://dx.doi.org/10.1021/cen-09839-buscon13.
Texto completoAbbas, Charles y Paul Roessler. "Session 5 Biobased Industrial Chemicals". Applied Biochemistry and Biotechnology 123, n.º 1-3 (2005): 0781–82. http://dx.doi.org/10.1385/abab:123:1-3:0781.
Texto completoVerduyckt, Jasper y Dirk E. De Vos. "Controlled defunctionalisation of biobased organic acids". Chemical Communications 53, n.º 42 (2017): 5682–93. http://dx.doi.org/10.1039/c7cc01380a.
Texto completoDiamond, Gary, Alfred Hagemeyer, Vince Murphy y Valery Sokolovskii. "Catalytic Conversion of Biorenewable Sugar Feedstocks into Market Chemicals". Combinatorial Chemistry & High Throughput Screening 21, n.º 9 (21 de enero de 2019): 616–30. http://dx.doi.org/10.2174/1386207322666181219155050.
Texto completoMourao Vilela, Carlos, Evert Boymans y Berend Vreugdenhil. "Co-Production of Aromatics in Biomass and Waste Gasification". Processes 9, n.º 3 (4 de marzo de 2021): 463. http://dx.doi.org/10.3390/pr9030463.
Texto completoSag, Jacob, Daniela Goedderz, Philipp Kukla, Lara Greiner, Frank Schönberger y Manfred Döring. "Phosphorus-Containing Flame Retardants from Biobased Chemicals and Their Application in Polyesters and Epoxy Resins". Molecules 24, n.º 20 (17 de octubre de 2019): 3746. http://dx.doi.org/10.3390/molecules24203746.
Texto completoMeuwese, Anne M., Niels J. Schenk, Henri C. Moll y Anton J. M. Schoot Uiterkamp. "Biobased Chemicals in a Carbon-Restricted World". Environmental Science & Technology 47, n.º 22 (30 de octubre de 2013): 12623–24. http://dx.doi.org/10.1021/es4039566.
Texto completoTesis sobre el tema "Biobased chemicals"
Zhang, Lu. "Development of Non-isocyanate Polyurethanes from Biobased Furanic Chemicals". The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1574777307668391.
Texto completoLonganesi, Luca <1986>. "Bioconversion of Agro-Food Wastes into Biofuels and Biobased Chemicals". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amsdottorato.unibo.it/7388/1/Longanesi_Luca_tesi.pdf.
Texto completoLonganesi, Luca <1986>. "Bioconversion of Agro-Food Wastes into Biofuels and Biobased Chemicals". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amsdottorato.unibo.it/7388/.
Texto completoWang, Lianjie. "New biobased chemicals from HMF and GMF : Applications of Morita-Baylis-Hillman reaction and nitrone 1,3-dipolar cycloaddition". Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI026.
Texto completoThe design of new fine chemicals from biomass and platform molecules has recently become a very active field of research. 5-Hydroxymethylfurfural (HMF) is considered as one of the most promising renewable building blocks derived from carbohydrates, due to the rich chemistry offered by its high level of functionality. Its glucosylated analogue glucosyloxymethylfurfural (GMF), though much less available, is also an interesting biobased furanic aldehyde able to provide a range of novel architectures which include a remaining full carbohydrate moiety. The present thesis is a contribution to the use of these two building blocks for the design of novel fine chemicals, using notably two reactions, namely the Morita-Baylis-Hillman reaction, and the cycloaddition of nitrones. The application of these strategies for designing novel surfactants was also investigated. First, we investigated the MBH reaction of HMF and GMF with cycloalkenones using pure water as solvent. New functionalized scaffolds have been prepared in mild and safe conditions with remarkable atom-economy by this route for the first time. Then we investigated the possibility to run MBH reactions of HMF and GMF with acrylates or other alkenes in absence of any solvent. The 1,3-dipolar cycloaddition reactions of nitrones obtained from HMF and GMF offer novel synthetic routes towards biobased isoxazolidines. The sequence “nitrone formation-cycloaddition reaction” can be performed either in a multicomponent approach or in a stepwise one. In the last part, we addressed the possibility to use these two routes for the design of novels biobased surfactants, in the frame of a collaboration with Prof Véronique RATAJ and Dr Fermin ONTIVEROS of the CISCO team of the UCCS research unit in Lille. Preliminary results on their surfactants properties have been obtained, and indicate a real interest of these compounds which exhibit easily adjustable properties based on simple structural variations, and which are obtained in an easy straightforward and original synthetic sequence
Buono, Pietro. "Chemical modification of lignin for the elaboration of novel biobased aromatic polymers and additives". Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAE015/document.
Texto completoAmong biomass components, lignin is considered one of the most promising natural polymers suitable for the conversion of biomass into renewable added-value chemicals and materials. However, large amount of lignin generated from wood pulping industry is burn as low cost energy source, and only 2% is exploited in the chemical industry. The presence of sulphur moieties and the large molecular diversity are the most reasons impeding the use of lignin as building blocks for the production of chemicals and materials. Chemical modifications have been acknowledged to be an important tool to circumvent these limitations. In the current work, taking advantage of the high hydroxyl groups content of a sulphur free soda lignin (SL), different synthetic strategies have been applied to introduce new chemical groups and used either to produce lignin derivatives suitable for “click” polymerization either to increase lignin hydrophobicity, facilitating its processing in polymeric matrices
Hendeberg, Matilda. "Hydrothermally carbonized wood as a component in biobased material for 3D-printing". Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-278843.
Texto completoKonsumenter ställer högre krav på att material och produkter de använder har liten påverkan på miljön. Till följd av detta lägger forskningen mer resurser på att hitta miljövänliga tillverkningsmetoder och material. Hydrotermisk karbonisering (HTC) är en relativt miljövänlig process som har använts i denna studie. Tall (ett prov med och ett utan bark) samt cellulosa karboniserades vid 220 °C och 240 °C i två timmar, för att på detta vis producera en fast kolprodukt som kunde användas i en komposit med biopolymeren Polylaktid (PLA). Kompositen extruderades sedan till filament som användes vid 3D printing. Röntgenpulverdiffraktion (XRD), Svepelektronmikroskopi (SEM) och Fourier-transform infraröd spektroskopi (FTIR) visade på att HTC hade genererat amorfa kolmaterial, med mikrosfärer och ökad aromaticitet från både cellulosa och båda tallproverna. Samtliga produkter från karbonisering vid 240 °C användes för att göra tre olika kompositer med vardera 0,1 vikt% kolmaterial. Kompositer tillverkades även från PLA och 1 vikt% tall med bark, samt 1 vikt% tall med bark karboniserad vid 240 °C. Filament extruderades av ren PLA samt ovan nämnda kompositer med 0.1 vikt% karboniserad cellulosa och 0.1 vikt% karboniserad tall med bark. Dessa användes vid 3D printing för att skriva ut sex hundben per filament, enligt ISO standarden ISO 527-2 1BA. Vid ett tillfälle för vardera av de två kompositerna täpptes mynningen till 3D skrivaren igen av partiklar i filamenten. Detta löstes dock enkelt. Mekaniska tester kunde tyvärr inte utföras på hundbenen, men inga fysiska brister beskådades på dem. Både extrudering och 3D printing var lyckade.
Clénet, Jocelyn. "A contribution to the understanding of chemical phenomena occuring during the formation of a biobased resin at high-temperature". Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEI114.
Texto completoAlhwaige, Almahdi A. "NOVEL BIOBASED CHITOSAN/POLYBENZOXAZINE CROSS-LINKED POLYMERS AND ADVANCED CARBON AEROGELS FOR CO2 ADSORPTION". Case Western Reserve University School of Graduate Studies / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=case1396437860.
Texto completoChumeka, Wannapa. "Improvement of compatibility of poly(lactic acid) blended with natural rubber by modified natural rubber". Phd thesis, Université du Maine, 2013. http://tel.archives-ouvertes.fr/tel-01018026.
Texto completoPanwiriyarat, Wannarat. "Synthèse et étude des propriétés d'un polyuréthane biosourcé obtenu du caoutchouc naturel et du poly(ε-caprolactone)". Phd thesis, Université du Maine, 2012. http://tel.archives-ouvertes.fr/tel-00795875.
Texto completoLibros sobre el tema "Biobased chemicals"
L, Chum Helena, ed. Polymers from biobased materials. Park Ridge, N.J., U.S.A: Noyes Data Corp., 1991.
Buscar texto completoThe biobased economy: Biofuels, materials, and chemicals in the post-oil era. Abingdon, Oxon: Routledge, 2012.
Buscar texto completoHans, Langeveld, Meeusen Marieke y Sanders Johan, eds. The biobased economy: Biofuels, materials and chemicals in the post-oil era. London: Earthscan, 2010.
Buscar texto completoBiomass Research & Development Technical Advisory Committee. Vision: For bioenergy & biobased products in the United States. Wash. D.C: Biomass Research & Development Technical Advisory Committee, 2002.
Buscar texto completoAllan, Eaglesham y National Agricultural Biotechnology Council (U.S.), eds. The biobased economy of the twenty-first century: Agriculture expanding into health, energy, chemicals, and materials. Ithaca, N.Y: National Agricultural Biotechnology Council, 2000.
Buscar texto completoTracewell, Cara. Biobased Chemicals. de Gruyter GmbH, Walter, 2023.
Buscar texto completoTracewell, Cara. Biobased Chemicals. de Gruyter GmbH, Walter, 2023.
Buscar texto completoTracewell, Cara. Biobased Chemicals. de Gruyter GmbH, Walter, 2023.
Buscar texto completoChum, Helena L. Polymers from Biobased Materials. Elsevier Science & Technology Books, 1991.
Buscar texto completoAdvanced Bioprocessing for Alternative Fuels, Biobased Chemicals, and Bioproducts. Elsevier, 2019. http://dx.doi.org/10.1016/c2018-0-02436-6.
Texto completoCapítulos de libros sobre el tema "Biobased chemicals"
Cameron, Douglas C. y Jeff Lievense. "Biobased Industrial Chemicals". En Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4–7, 2003, in Breckenridge, CO, 805–6. Totowa, NJ: Humana Press, 2004. http://dx.doi.org/10.1007/978-1-59259-837-3_65.
Texto completoPowell, Randall W., Clare Elton, Ross Prestidge y Helene Belanger. "Biobased Chemicals and Polymers". En Plant Biomass Conversion, 275–309. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470959138.ch12.
Texto completoRyan, Chris y Robert Dorsch. "Commercialization of Biobased Products". En Biotechnology for Fuels and Chemicals, 1207–9. Totowa, NJ: Humana Press, 2002. http://dx.doi.org/10.1007/978-1-4612-0119-9_97.
Texto completoDodds, David y Bob Humphreys. "Production of Aromatic Chemicals from Biobased Feedstock". En Catalytic Process Development for Renewable Materials, 183–237. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527656639.ch8.
Texto completoCecchi, Teresa. "Biocascading: Platform Molecules, Value Added Chemicals, and Bioactives". En Biobased Products from Food Sector Waste, 169–229. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63436-0_5.
Texto completoPontes, R., A. Romaní, M. Michelin, L. Domingues, J. Nunes y J. Teixeira. "Biobased Fuel and Chemicals from Lignocellulosic Biomass—Prospects and Challenges". En Emerging Trends in Environmental Biotechnology, 117–30. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003186304-10.
Texto completoCarole, Tracy M., Joan Pellegrino y Mark D. Paster. "Opportunities in the Industrial Biobased Products Industry". En Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4–7, 2003, in Breckenridge, CO, 871–85. Totowa, NJ: Humana Press, 2004. http://dx.doi.org/10.1007/978-1-59259-837-3_71.
Texto completoBecker, Judith, Stefanie Kind y Christoph Wittmann. "Systems Metabolic Engineering of Corynebacterium glutamicum for Biobased Production of Chemicals, Materials and Fuels". En Systems Metabolic Engineering, 151–91. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4534-6_6.
Texto completoCosío-Cuadros, R., Gema Núñez-López, Martha F. Martín del Campo, Jorge A. Rodríguez, Juan C. Mateos-Díaz y Georgina Sandoval. "Agro-Industrial Wastes to Sustainable Bio-Oil Fuels, Enzymes and Biobased Chemicals in Yeast-Biorefineries". En Microbiology of Green Fuels, 44–64. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003171157-3.
Texto completoSridevi, Veluru, Dadi V. Suriapparao, Hemanth Kumar Tanneru y K. S. N. V. Prasad. "An Overview on Organosolv Production of Bio-refinery Process Streams for the Production of Biobased Chemicals". En Clean Energy Production Technologies, 345–74. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4312-6_11.
Texto completoActas de conferencias sobre el tema "Biobased chemicals"
Erhan, Sevim Z. y Brajendra K. Sharma. "Development and Tribochemical Evaluation of Biobased Antiwear Additive". En ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81444.
Texto completoMarmur, Breanna L. y Theodore J. Heindel. "Effect of Biomass Inlet Concentration on Mixing in a Double Screw Pyrolyzer". En ASME/JSME/KSME 2015 Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ajkfluids2015-34422.
Texto completoBeyler Çiğil, Aslı. "Biobased intelligent packaging application". En 10th International Symposium on Graphic Engineering and Design. University of Novi Sad, Faculty of technical sciences, Department of graphic engineering and design,, 2020. http://dx.doi.org/10.24867/grid-2020-p40.
Texto completoSharma, Brajendra y Derek Vardon. "Biobased emulsions for lubrication applications". En 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/vyab9723.
Texto completoPagliaro, Mario. "Biobased Glycerol: The Profitable Platform Biochemical of the Chemical Industry". En Virtual 2021 AOCS Annual Meeting & Expo. American Oil Chemists’ Society (AOCS), 2021. http://dx.doi.org/10.21748/am21.362.
Texto completoBiresaw, Girma, Terry A. Isbell y Steven C. Cermak. "Film-Forming Properties of Estolides". En World Tribology Congress III. ASMEDC, 2005. http://dx.doi.org/10.1115/wtc2005-64089.
Texto completoLang, Qian, He Yu Chen y Jun Wen Pu. "The research of chemical modification on fast-growing wood". En 2012 International Conference on Biobase Material Science and Engineering (BMSE). IEEE, 2012. http://dx.doi.org/10.1109/bmse.2012.6466229.
Texto completoChen, Heyu, Qian Lang, Zifeng Feng, Yilin Xu y Junwen Pu. "Characterization of hot-pressed poplar wood with chemical pretreatment". En 2012 International Conference on Biobase Material Science and Engineering (BMSE). IEEE, 2012. http://dx.doi.org/10.1109/bmse.2012.6466230.
Texto completoWang, Ming-Chung, Pao-Chi Chen y Ching-Yi Lee. "A Study on Vocational Knowledge and Skill Requirements for Technological and Vocational University Graduates in Bioenergy and Biobased Products Industries". En 14th Asia Pacific Confederation of Chemical Engineering Congress. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-1445-1_621.
Texto completoLuo, Sha, Yiqiang Wu y Jun Huang. "Thermal and chemical properties of benzene-alcohol extractives from two species of redwood". En 2012 International Conference on Biobase Material Science and Engineering (BMSE). IEEE, 2012. http://dx.doi.org/10.1109/bmse.2012.6466202.
Texto completoInformes sobre el tema "Biobased chemicals"
Gustafson, Richard. Development of the University of Washington Biofuels and Biobased Chemicals Process Laboratory. Office of Scientific and Technical Information (OSTI), febrero de 2014. http://dx.doi.org/10.2172/1117862.
Texto completoMcNeary, Wilson. Enhanced Catalyst Durability for the Oxidative Production of Biobased Chemicals: Cooperative Research and Development Final Report, CRADA Number CRD-19-00827. Office of Scientific and Technical Information (OSTI), diciembre de 2022. http://dx.doi.org/10.2172/1903770.
Texto completoFatigati, M. A., N. Sumait y M. Carver. The creation of greenhouse gas benefits via biobased fuel and chemical production within the country of Guyana. Office of Scientific and Technical Information (OSTI), marzo de 1998. http://dx.doi.org/10.2172/764177.
Texto completo