Literatura académica sobre el tema "Bilevel optimal control"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Bilevel optimal control".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Bilevel optimal control"
Mehlitz, Patrick y Gerd Wachsmuth. "Weak and strong stationarity in generalized bilevel programming and bilevel optimal control". Optimization 65, n.º 5 (31 de diciembre de 2015): 907–35. http://dx.doi.org/10.1080/02331934.2015.1122007.
Texto completoYe, Jane J. "Optimal Strategies For Bilevel Dynamic Problems". SIAM Journal on Control and Optimization 35, n.º 2 (marzo de 1997): 512–31. http://dx.doi.org/10.1137/s0363012993256150.
Texto completoBonnel, Henri y Jacqueline Morgan. "Semivectorial Bilevel Convex Optimal Control Problems: Existence Results". SIAM Journal on Control and Optimization 50, n.º 6 (enero de 2012): 3224–41. http://dx.doi.org/10.1137/100795450.
Texto completoDempe, S. "Computing optimal incentives via bilevel programming". Optimization 33, n.º 1 (enero de 1995): 29–42. http://dx.doi.org/10.1080/02331939508844061.
Texto completoYe, Jianxiong y An Li. "Necessary optimality conditions for nonautonomous optimal control problems and its applications to bilevel optimal control". Journal of Industrial & Management Optimization 13, n.º 5 (2017): 1–21. http://dx.doi.org/10.3934/jimo.2018101.
Texto completoLin, Hongzhi. "Optimal Design of Cordon Sanitaire for Regular Epidemic Control". Advances in Civil Engineering 2021 (1 de junio de 2021): 1–11. http://dx.doi.org/10.1155/2021/5581758.
Texto completoAtiya Wardil *, Othman y Samera Khaleel Ibrahim. "The Bi-level Programming Approach to Improve the Inventory Control System with a Practical Application". Journal of Economics and Administrative Sciences 30, n.º 142 (6 de septiembre de 2024): 509–31. http://dx.doi.org/10.33095/gd8dy062.
Texto completoAmouzegar, Mahyar A. y Khosrow Moshirvaziri. "Determining optimal pollution control policies: An application of bilevel programming". European Journal of Operational Research 119, n.º 1 (noviembre de 1999): 100–120. http://dx.doi.org/10.1016/s0377-2217(98)00336-1.
Texto completoKnauer, Matthias. "Fast and save container cranes as bilevel optimal control problems". Mathematical and Computer Modelling of Dynamical Systems 18, n.º 4 (agosto de 2012): 465–86. http://dx.doi.org/10.1080/13873954.2011.642388.
Texto completoChen, Yi, Kadhim Hayawi, Meikai Fan, Shih Yu Chang, Jie Tang, Ling Yang, Rui Zhao, Zhongqi Mao y Hong Wen. "A Bilevel Optimization Model Based on Edge Computing for Microgrid". Sensors 22, n.º 20 (11 de octubre de 2022): 7710. http://dx.doi.org/10.3390/s22207710.
Texto completoTesis sobre el tema "Bilevel optimal control"
Mehlitz, Patrick. "Contributions to complementarity and bilevel programming in Banach spaces". Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2017. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-227091.
Texto completoFisch, Florian [Verfasser]. "Development of a Framework for the Solution of High-Fidelity Trajectory Optimization Problems and Bilevel Optimal Control Problems / Florian Fisch". München : Verlag Dr. Hut, 2011. http://d-nb.info/1011441756/34.
Texto completoStibbe, Hilke Isabell [Verfasser] y Ekaterina [Akademischer Betreuer] Kostina. "Special Bilevel Quadratic Problems for Construction of Worst-Case Feedback Control in Linear-Quadratic Optimal Control Problems under Uncertainties / Hilke Isabell Stibbe ; Betreuer: Ekaterina Kostina". Marburg : Philipps-Universität Marburg, 2019. http://d-nb.info/1202110509/34.
Texto completoFisch, Florian [Verfasser], Florian [Akademischer Betreuer] Holzapfel y Matthias [Akademischer Betreuer] Gerdts. "Development of a Framework for the Solution of High-Fidelity Trajectory Optimization Problems and Bilevel Optimal Control Problems / Florian Fisch. Gutachter: Florian Holzapfel ; Matthias Gerdts. Betreuer: Florian Holzapfel". München : Universitätsbibliothek der TU München, 2011. http://d-nb.info/1013435443/34.
Texto completoPalagachev, Konstantin [Verfasser], Matthias [Akademischer Betreuer] Gerdts, Matthias [Gutachter] Gerdts y Sebastian [Gutachter] Sager. "Mixed-Integer Optimal Control and Bilevel Optimization: Vanishing Constraints and Scheduling Tasks / Konstantin Palagachev ; Gutachter: Matthias Gerdts, Sebastian Sager ; Akademischer Betreuer: Matthias Gerdts ; Universität der Bundeswehr München, Fakultät für Luft- und Raumfahrttechnik". Neubiberg : Universitätsbibliothek der Universität der Bundeswehr München, 2017. http://d-nb.info/1172216533/34.
Texto completoDutto, Rémy. "Méthode à deux niveaux et préconditionnement géométrique en contrôle optimal. Application au problème de répartition de couple des véhicules hybrides électriques". Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSEP088.
Texto completoMotivated by the torque split and gear shift industrial problem of hybrid electric vehicles, this work mainly proposes two new indirect optimal control problem methods. The first one is the Macro-Micro method, which is based on a bilevel decomposition of the optimal control problem and uses Bellman’s value functions at fixed times. These functions are known to be difficult to create. The main idea of this method is to approximate these functions by neural networks, which leads to a hierarchical resolution of a low dimensional optimization problem and a set of independent optimal control problems defined on smaller time intervals. The second one is a geometric preconditioning method, which allows a more efficient resolution of the optimal control problem. This method is based on a geometrical interpretation of the Pontryagin’s co-state and on the Mathieu transformation, and uses a linear diffeomorphism which transforms an ellipse into a circle. These two methods, presented separately, can be combined and lead together to a fast, robust and light resolution for the torque split and gear shift optimal control problem, closer to the embedded requirements
Capítulos de libros sobre el tema "Bilevel optimal control"
Mehlitz, Patrick y Gerd Wachsmuth. "Bilevel Optimal Control: Existence Results and Stationarity Conditions". En Bilevel Optimization, 451–84. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52119-6_16.
Texto completoMarcotte, Patrice y Gilles Savard. "A Bilevel Programming Approach to Optimal Price Setting". En Decision & Control in Management Science, 97–117. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-3561-1_6.
Texto completoBonnel, Henri y Jacqueline Morgan. "Optimality Conditions for Semivectorial Bilevel Convex Optimal Control Problems". En Computational and Analytical Mathematics, 45–78. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7621-4_4.
Texto completoDempe, Stephan, Felix Harder, Patrick Mehlitz y Gerd Wachsmuth. "Analysis and Solution Methods for Bilevel Optimal Control Problems". En International Series of Numerical Mathematics, 77–99. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79393-7_4.
Texto completoPalagachev, Konstantin D. y Matthias Gerdts. "Numerical Approaches Towards Bilevel Optimal Control Problems with Scheduling Tasks". En Math for the Digital Factory, 205–28. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63957-4_10.
Texto completoPalagachev, Konstantin y Matthias Gerdts. "Exploitation of the Value Function in a Bilevel Optimal Control Problem". En IFIP Advances in Information and Communication Technology, 410–19. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-55795-3_39.
Texto completoKnauer, Matthias y Christof Büskens. "Hybrid Solution Methods for Bilevel Optimal Control Problems with Time Dependent Coupling". En Recent Advances in Optimization and its Applications in Engineering, 237–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12598-0_20.
Texto completoBock, Hans Georg, Ekaterina Kostina, Marta Sauter, Johannes P. Schlöder y Matthias Schlöder. "Numerical Methods for Diagnosis and Therapy Design of Cerebral Palsy by Bilevel Optimal Control of Constrained Biomechanical Multi-Body Systems". En International Series of Numerical Mathematics, 21–41. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79393-7_2.
Texto completoActas de conferencias sobre el tema "Bilevel optimal control"
Samadi, Sepideh, Daniel Burbano y Farzad Yousefian. "Achieving Optimal Complexity Guarantees for a Class of Bilevel Convex Optimization Problems". En 2024 American Control Conference (ACC), 2206–11. IEEE, 2024. http://dx.doi.org/10.23919/acc60939.2024.10644364.
Texto completoMinciardi, R. y M. Robba. "Bilevel approach for the optimal control of interconnected microgrids". En 2014 IEEE 53rd Annual Conference on Decision and Control (CDC). IEEE, 2014. http://dx.doi.org/10.1109/cdc.2014.7039770.
Texto completoSuryan, Varun, Ankur Sinha, Pekka Malo y Kalyanmoy Deb. "Handling inverse optimal control problems using evolutionary bilevel optimization". En 2016 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2016. http://dx.doi.org/10.1109/cec.2016.7744019.
Texto completoEnmin Feng, Zhigang Jiang, Yanjie Li y Zhilong Xiu. "The Optimal Properties of Nonlinear Bilevel Multi-stage Dynamic System". En 2006 6th World Congress on Intelligent Control and Automation. IEEE, 2006. http://dx.doi.org/10.1109/wcica.2006.1712507.
Texto completoTomasi, Matilde y Alessio Artoni. "Identification of Motor Control Objectives in Human Locomotion via Multi-Objective Inverse Optimal Control". En ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/detc2022-89536.
Texto completoFisch, Florian, Jakob Lenz, Florian Holzapfel y Gottfried Sachs. "On the Solution of Bilevel Optimal Control Problems to Increase the Fairness in Air Races". En AIAA Atmospheric Flight Mechanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-7625.
Texto completo