Literatura académica sobre el tema "Bihamiltonian"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Bihamiltonian".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Bihamiltonian"

1

GUHA, PARTHA. "BIDIFFERENTIAL CALCULI, BICOMPLEX STRUCTURE AND ITS APPLICATION TO BIHAMILTONIAN SYSTEMS". International Journal of Geometric Methods in Modern Physics 03, n.º 02 (marzo de 2006): 209–32. http://dx.doi.org/10.1142/s0219887806001120.

Texto completo
Resumen
In this exposition, we study the relationship between the bihamiltonian formalism of completely integrable systems using the bidifferential calculi introduced by Dimakis and Müller-Hoissen in [1] and the bihamiltonian formulation of integrable systems with a finite number of degrees of freedom via the Frölicher–Nijenhuis geometry. This pair of bidifferetial operators are used to construct alternative Lie algebroids as shown by Camacaro and Carinena. We find its connection to Finsler geometry. We also find the dispersionless integrable hierarchies using the bidifferential ideals. Finally, we lay out its connection to Gelfand–Zakharevich bihamiltonian geometry.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Odesskii, A. "Bihamiltonian Elliptic Structures". Moscow Mathematical Journal 4, n.º 4 (2004): 941–46. http://dx.doi.org/10.17323/1609-4514-2004-4-4-941-946.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

FIGUEROA-O'FARRILL, JOSÉ M., EDUARDO RAMOS y JAVIER MAS. "INTEGRABILITY AND BIHAMILTONIAN STRUCTURE OF THE EVEN ORDER SKDV HIERARCHIES". Reviews in Mathematical Physics 03, n.º 04 (diciembre de 1991): 479–501. http://dx.doi.org/10.1142/s0129055x91000175.

Texto completo
Resumen
We study reductions of the even order SKP hierarchy. We prove that these systems are integrable and bihamiltonian. We derive an infinite set of independent polynomial conservation laws, prove their nontriviality, and derive Lenard relations between them. A further reduction of the simplest such hierarchy is identified with the supersymmetric KdV hierarchy of Manin and Radul. We prove that it inherits all the bihamiltonian and integrability properties from the unreduced hierarchy.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Casati, Paolo, Gregorio Falqui, Franco Magri y Marco Pedroni. "Bihamiltonian reductions and ωn-algebras". Journal of Geometry and Physics 26, n.º 3-4 (julio de 1998): 291–310. http://dx.doi.org/10.1016/s0393-0440(97)00060-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Ibort, A., F. Magri y G. Marmo. "Bihamiltonian structures and Stäckel separability". Journal of Geometry and Physics 33, n.º 3-4 (abril de 2000): 210–28. http://dx.doi.org/10.1016/s0393-0440(99)00051-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Carlet, Guido, Hessel Posthuma y Sergey Shadrin. "Bihamiltonian Cohomology of KdV Brackets". Communications in Mathematical Physics 341, n.º 3 (2 de enero de 2016): 805–19. http://dx.doi.org/10.1007/s00220-015-2540-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Casati, Paolo y Giovanni Ortenzi. "Bihamiltonian Equations on Polynomial Virasoro Algebras". Journal of Nonlinear Mathematical Physics 13, n.º 3 (enero de 2006): 352–64. http://dx.doi.org/10.2991/jnmp.2006.13.3.3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Marmo, G., A. Simoni y F. Ventriglia. "BiHamiltonian quantum systems and Weyl quantization". Reports on Mathematical Physics 48, n.º 1-2 (agosto de 2001): 149–57. http://dx.doi.org/10.1016/s0034-4877(01)80074-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Gelfand, Israel M. y Ilya Zakharevich. "Webs, Veronese curves, and bihamiltonian systems". Journal of Functional Analysis 99, n.º 1 (julio de 1991): 150–78. http://dx.doi.org/10.1016/0022-1236(91)90057-c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Jodeit, Max y Peter J. Olver. "On the equation grad f = M grad g". Proceedings of the Royal Society of Edinburgh: Section A Mathematics 116, n.º 3-4 (1990): 341–58. http://dx.doi.org/10.1017/s0308210500031541.

Texto completo
Resumen
SynopsisThe system of differential equations ∇f = M∇g, where M is a given square matrix, arises in many contexts. A complete solution to this problem in the case when M is a constant matrix is presented here. Applications to continuum mechanics and biHamiltonian systems are indicated.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Bihamiltonian"

1

Izosimov, Anton. "Singularities of bihamiltonian systems and the multidimensional rigid body". Thesis, Loughborough University, 2012. https://dspace.lboro.ac.uk/2134/9966.

Texto completo
Resumen
Two Poisson brackets are called compatible if any linear combination of these brackets is a Poisson bracket again. The set of non-zero linear combinations of two compatible Poisson brackets is called a Poisson pencil. A system is called bihamiltonian (with respect to a given pencil) if it is hamiltonian with respect to any bracket of the pencil. The property of being bihamiltonian is closely related to integrability. On the one hand, many integrable systems known from physics and geometry possess a bihamiltonian structure. On the other hand, if we have a bihamiltonian system, then the Casimir functions of the brackets of the pencil are commuting integrals of the system. We consider the situation when these integrals are enough for complete integrability. As it was shown by Bolsinov and Oshemkov, many properties of the system in this case can be deduced from the properties of the Poisson pencil itself, without explicit analysis of the integrals. Developing these ideas, we introduce a notion of linearization of a Poisson pencil. In terms of linearization, we give a criterion for non-degeneracy of a singular point and describe its type. These results are applied to solve the stability problem for a free multidimensional rigid body.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Rigal, Marie-Hélène. "Géométrie globale des systèmes bihamiltoniens en dimension impaire". Montpellier 2, 1996. http://www.theses.fr/1996MON20003.

Texto completo
Resumen
Suivant la definition donnee par i. Gelfand et i. Zakharevitch gz, on etudie les systemes bihamiltoniens reguliers definis sur des varietes de dimension impaire 2n + 1. A un tel systeme est naturellement associe un feuilletage a de codimension n + 1, appele ame du systeme bihamiltonien. Il possede une structure transverse de tissu de veronese gz et ses feuilles sont munies d'une structure affine canonique. L'objet de la these est la description de la variete m, feuilletee par a, lorsqu'elle est fermee. Ce travail se divise en deux parties. La premiere est consacree a l'etude des feuilletages transversalement de veronese en toutes dimension et codimension et permet en particulier d'etablir que l'ame d'un systeme bihamiltonien admet un parallelisme transverse adapte a sa structure transverse et que le hamiltonien h est basique pour a. Dans la deuxieme partie, ce resultat essentiel conduit a une description assez precise, d'une part, des systemes bihamiltoniens sur les 5-varietes fermees, d'autre part, des tissus de veronese sur les 3-varietes fermees, apres en avoir effectue une etude locale prealable
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

MEHDI, MOHAMAD. "Existence de lois de conservation et de systemes bihamiltoniens". Toulouse 3, 1991. http://www.theses.fr/1991TOU30049.

Texto completo
Resumen
Une loi de conservation sur une variete differentiable m par rapport a un champ d'endomorphisme h de tm, est une 1-forme scalaire tel que d=0 et d(h*)=0h* etant le transpose de h. Les lois de conservations ont ete introduites par lax dans l'etude de l'integrabilite des systemes differentiels et systemes bihamiltoniens. On sait en effet, d'apres les travaux de magri que le cadre geometrique des systemes completement integrables est une variete munie d'un couple de tenseurs de poisson compatibles (p,q). Les systemes completement integrables sont les champs hamiltoniens definis par les deux structures i. E. Les champs x du type x=pdh=qdk h, k deux fonctions sur m. Si par exemple p est inversible cette condition equivaut a p##1qdk=dh, ce qui signifie que dk est une loi de conservation par rapport au champ d'endomorphismes h=p##1q. Ainsi la recherche des champs completement integrables equivaut (modulo certaines conditions sur les tenseurs de poisson) a la recherche des lois de conservations. Le but de ce travail est double: 1) etudier quand un couple de tenseur de poisson compatible donne lieu, par passage au quotient a un certain feuilletage associe a un operateur de recursion h; 2) etudier l'integrabilite formelle de l'operateur differentiel qui donne les lois de conservations associees a h. Le premier probleme a ete pose par magri. On trouve une condition algebrique portant sur p et q qui assure l'existence de l'operateur h. Le deuxieme probleme a ete etudie par osborn qui a obtenu des resultats tres partiels et incomplets, sans doute a cause de la grande complexite technique du probleme. On donne la solution dans le cas general a l'aide de la theorie de spencer-goldschmidt
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Viviani, Emanuele. "Bihamiltonian structures on compact hermitian symmetric spaces". Doctoral thesis, 2022. http://hdl.handle.net/2158/1268162.

Texto completo
Resumen
In this thesis, we discuss a new approach to the problem of the diagonalization of the Nijenhuis tensor on compact hermitian symmetric spaces. Our attention is more focused on the hamiltonian forms rather than on the eigenvalues of the Nijenhuis tensor. This is motivated by the fact that the eigenvalues of N are only continuous functions and their derivatives have singularities. We describe these hamiltonian forms in terms of polynomials invariant with respect to a chain of subalgebra.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Bihamiltonian"

1

Duplij, Steven, Joshua Feinberg, Moshe Moshe, Soon-Tae Hong, Omer Faruk Dayi, Omer Faruk Dayi, Francois Gieres et al. "Bihamiltonian Reduction and SKdVs." En Concise Encyclopedia of Supersymmetry, 58–60. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_63.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Morales, J. J. y R. Ramirez. "Bihamiltonian Systems and Lax Representation". En Hamiltonian Mechanics, 253–59. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-0964-0_24.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Olver, Peter J. "Canonical Forms for Bihamiltonian Systems". En Integrable Systems, 239–49. Boston, MA: Birkhäuser Boston, 1993. http://dx.doi.org/10.1007/978-1-4612-0315-5_12.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Casati, Paolo, Franco Magri y Marco Pedroni. "Bihamiltonian Manifolds And Sato’s Equations". En Integrable Systems, 251–72. Boston, MA: Birkhäuser Boston, 1993. http://dx.doi.org/10.1007/978-1-4612-0315-5_13.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Casati, Paolo, Franco Magri y Marco Pedroni. "The Bihamiltonian Approach to Integrable Systems". En Modern Group Analysis: Advanced Analytical and Computational Methods in Mathematical Physics, 101–10. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2050-0_10.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Olver, P. J. "Canonical Forms for Compatible BiHamiltonian Systems". En Solitons and Chaos, 171–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84570-3_21.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Kosmann-Schwarzbach, Y. "Generalized Symmetries, Recursion Operators and Bihamiltonian Systems". En Partially Intergrable Evolution Equations in Physics, 479–89. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-94-009-0591-7_18.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Gelfand, Israel M. y Ilya Zakharevich. "On the Local Geometry of a Bihamiltonian Structure". En The Gelfand Mathematical Seminars, 1990–1992, 51–112. Boston, MA: Birkhäuser Boston, 1993. http://dx.doi.org/10.1007/978-1-4612-0345-2_6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Liu, Si-Qi. "Lecture Notes on Bihamiltonian Structures and Their Central Invariants". En B-Model Gromov-Witten Theory, 573–625. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94220-9_7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Zubelli, Jorge. "The bispectral problem, rational solutions of the master symmetry flows, and bihamiltonian systems". En The Bispectral Problem, 139–55. Providence, Rhode Island: American Mathematical Society, 1998. http://dx.doi.org/10.1090/crmp/014/12.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía