Índice
Literatura académica sobre el tema "Bi-phasic flow"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Bi-phasic flow".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Bi-phasic flow"
Abolhasani, Milad, Nicholas C. Bruno y Klavs F. Jensen. "Oscillatory three-phase flow reactor for studies of bi-phasic catalytic reactions". Chemical Communications 51, n.º 43 (2015): 8916–19. http://dx.doi.org/10.1039/c5cc02051d.
Texto completoMoran, Paul R. "4654591 NMR flow imaging using bi-phasic excitation field gradients". Magnetic Resonance Imaging 5, n.º 5 (enero de 1987): II. http://dx.doi.org/10.1016/0730-725x(87)90139-1.
Texto completoGasmi, S. y F. Z. Nouri. "A study of a bi-phasic flow problem in porous media". Applied Mathematical Sciences 7 (2013): 2055–64. http://dx.doi.org/10.12988/ams.2013.13185.
Texto completoSharma, Prerna, P. Aswathi, Anit Sane, Shankar Ghosh y S. Bhattacharya. "Three-dimensional real-time imaging of bi-phasic flow through porous media". Review of Scientific Instruments 82, n.º 11 (noviembre de 2011): 113704. http://dx.doi.org/10.1063/1.3658822.
Texto completoElangovan, T., D. Mangalaraj, K. Prabakar, P. Kuppusami, Shabana Khan y E. Mohandas. "Microstructure Analysis of TaN/Cu Nanocomposite Coatings Deposited by Pulsed DC Magnetron Sputtering". Advanced Materials Research 123-125 (agosto de 2010): 427–30. http://dx.doi.org/10.4028/www.scientific.net/amr.123-125.427.
Texto completoYang, H., D. C. Florence, E. L. McCoy, W. A. Dick y P. S. Grewal. "Design and hydraulic characteristics of a field-scale bi-phasic bioretention rain garden system for storm water management". Water Science and Technology 59, n.º 9 (1 de mayo de 2009): 1863–72. http://dx.doi.org/10.2166/wst.2009.186.
Texto completoBarranco, David, Leslie N. Sutton, Sandra Florin, Joel Greenberg, Teresa Sinnwell, Laszlo Ligeti y Alan C. McLaughlin. "Use of 19F NMR Spectroscopy for Measurement of Cerebral Blood Flow: A Comparative Study Using Microspheres". Journal of Cerebral Blood Flow & Metabolism 9, n.º 6 (diciembre de 1989): 886–91. http://dx.doi.org/10.1038/jcbfm.1989.122.
Texto completoJian, Ranran, Zhonghe Shi, Haichao Liu, Weimin Yang y Mohini Sain. "Enhancing Mixing and Thermal Management of Recycled Carbon Composite Systems by Torsion-Induced Phase-to-Phase Thermal and Molecular Mobility". Polymers 12, n.º 4 (1 de abril de 2020): 771. http://dx.doi.org/10.3390/polym12040771.
Texto completoNicolas Receveur, Dmitry Nechipurenko, Yannick Knapp, Aleksandra Yakusheva, Eric Maurer, Cécile V. Denis, François Lanza, Mikhail Panteleev, Christian Gachet y Pierre H. Mangin. "Shear rate gradients promote a bi-phasic thrombus formation on weak adhesive proteins, such as fibrinogen in a VWF-dependent manner". Haematologica 105, n.º 10 (14 de noviembre de 2019): 2471–83. http://dx.doi.org/10.3324/haematol.2019.235754.
Texto completoGonawan, Fadzil Noor y Azlina Harun Kamaruddin. "Conceptual Study of Transesterification of Vegetable Oils in the Continuous-Stirred-Tank Reactor at Unsteady-State and Isothermal Conditions". Malaysian Journal of Fundamental and Applied Sciences 17, n.º 2 (29 de abril de 2021): 181–94. http://dx.doi.org/10.11113/mjfas.v17n2.2006.
Texto completoTesis sobre el tema "Bi-phasic flow"
Al, Nemer Rana. "Effect of two-phase fluid percolation on remodeling of geo-materials". Electronic Thesis or Diss., Ecole centrale de Nantes, 2023. http://www.theses.fr/2023ECDN0012.
Texto completoThe goal of carbon neutrality relying massively on the renewable energy sources can be accelerated by considering underground CO2 sequestration and underground storage of (i) hydrogen produced by the water electrolysis from renewable electricity, and (ii) synthesized methane produced by the methanation. However, the injection of these fluids into deep saline aquifers, can trigger local instabilities in the form of fluid fingering, which are precursors of macroscopic instabilities such as micro-seismicity, subsidence or ground swelling. The interaction between the injected fluid, the residential one and the host porous medium is a complex problem. To investigate the response of a solid skeleton percolated by an unsteady bi-phasic flow, an original bi-axial machine adapted to partially saturated geo-materials and providing a hydro-mechanical control, has been set-up. Drainage experiments have been conducted on mechanically loaded water-saturated sand samples by injecting air via an imposed capillary pressure. A testing protocol detailing the steps required to achieve successful drainage test, starting from sample preparation to air injection, has been established. Thanks to a high resolution optical system, the air infiltration through preferential pathway(s) within the granular medium, has been acquired. The monitoring of the propagating finger(s) has required the development of robust algorithm allowing the automatic interface detection for the set of available images. In addition, the skeleton remodeling driven by the fluid percolation has been quantified via finite- element based digital image correlation. The coupling between interface propagation and localized strains has been quantitatively measured as function of the mechanical loading, controlled by the effective stress. The results have shown a correlation between mechanical loading and the heterogeneous percolation in the form of fingering and localized strains