Índice
Literatura académica sobre el tema "BFV-BRST formalism"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "BFV-BRST formalism".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "BFV-BRST formalism"
Batalin, Igor A. y Peter M. Lavrov. "Quantum localization of classical mechanics". Modern Physics Letters A 31, n.º 22 (14 de julio de 2016): 1650128. http://dx.doi.org/10.1142/s0217732316501285.
Texto completoNirov, Khazret S. "The Ostrogradsky Prescription for BFV Formalism". Modern Physics Letters A 12, n.º 27 (7 de septiembre de 1997): 1991–2004. http://dx.doi.org/10.1142/s0217732397002041.
Texto completoNatividade, C. P. y A. de Souza Dutra. "BRST-BFV formalism for the generalized Schwinger model". Zeitschrift f�r Physik C Particles and Fields 75, n.º 3 (1 de julio de 1997): 575–78. http://dx.doi.org/10.1007/s002880050501.
Texto completoNIROV, KH S. "BRST FORMALISM FOR SYSTEMS WITH HIGHER ORDER DERIVATIVES OF GAUGE PARAMETERS". International Journal of Modern Physics A 11, n.º 29 (20 de noviembre de 1996): 5279–302. http://dx.doi.org/10.1142/s0217751x9600242x.
Texto completoPandey, Vipul Kumar. "Hamiltonian and Lagrangian BRST Quantization in Riemann Manifold". Advances in High Energy Physics 2022 (27 de febrero de 2022): 1–12. http://dx.doi.org/10.1155/2022/2158485.
Texto completoBatalin, Igor A., Peter M. Lavrov y Igor V. Tyutin. "A systematic study of finite BRST-BFV transformations in generalized Hamiltonian formalism". International Journal of Modern Physics A 29, n.º 23 (16 de septiembre de 2014): 1450127. http://dx.doi.org/10.1142/s0217751x14501279.
Texto completoYasmin, Safia. "U(1) gauged model of FJ-type chiral boson based on Batalin–Fradkin–Vilkovisky formalism". International Journal of Modern Physics A 35, n.º 23 (20 de agosto de 2020): 2050134. http://dx.doi.org/10.1142/s0217751x20501341.
Texto completoBatalin, Igor A., Peter M. Lavrov y Igor V. Tyutin. "A systematic study of finite BRST-BFV transformations in Sp(2)-extended generalized Hamiltonian formalism". International Journal of Modern Physics A 29, n.º 23 (16 de septiembre de 2014): 1450128. http://dx.doi.org/10.1142/s0217751x14501280.
Texto completoBatalin, Igor A., Peter M. Lavrov y Igor V. Tyutin. "Finite BRST–BFV transformations for dynamical systems with second-class constraints". Modern Physics Letters A 30, n.º 21 (18 de junio de 2015): 1550108. http://dx.doi.org/10.1142/s0217732315501084.
Texto completoKim, Yong-Wan, Mu-In Park, Young-Jai Park y Sean J. Yoon. "BRST Quantization of the Proca Model Based on the BFT and the BFV Formalism". International Journal of Modern Physics A 12, n.º 23 (20 de septiembre de 1997): 4217–39. http://dx.doi.org/10.1142/s0217751x97002309.
Texto completoTesis sobre el tema "BFV-BRST formalism"
Sacramento, Wilson Pereira do. "Quantização segundo o formalismo BRST-BFV de uma teoria com simetria de gauge e simetria conforme em um espaço-tempo com (d+2) dimensões". Universidade de São Paulo, 2003. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-25022014-115228/.
Texto completoA general covariant system hás a vanishing canonical Hamiltonian and its time evolution is determined by na effective Hamiltonian. This effective Hamiltonian is gauge dependent and its form depends on the gauge on the gauge choice. Dirac has proposed a method based on gauge theories, according to the BRST-BFV formalism to determine it. This method Will be applied both to the relativistic particle and to a two-times model. For the massless relativistic and spin N/2 we Will showhow to get the effective Hamiltonian for the canonical gauges discussed by Dirac, called the forms of dynamics: instant, front and point. We Will find the appropriate gauge fixing function in the BRST-BFV formalism. The gauge fixing function breaks the symmetries of the original action, the local and the global symmetries, so that the effective Hamiltonian is invariant by a gauge symmetry groupwhich is smaller than the gauge symmetry group of the classical action. In the two times physics, the symmetry group of the classical action is the conformal group SO(d,2), which is larger than the Poincares group of the relativistic particle. The action is also invariant by the local symmetry OSp(N\\2). By using the same technique used in the relativistic particle, we Will determine the effective Hamiltonians, after the gauges had been fixed. We Will see that their symmetries are smaller than the original action symmetries, but they are larger than the symmetry group of the relativistic particle. We Will find a non-relativistic arbitrary Hamiltonian, invariant by rotations in a space with (d-1) dimensions and spin N/2. In this work, we tried to solve some problems that appeared in two times physics elaborated by I Bars, Just like the arbitrariness of Hamiltonians and the choices of gauges, which lead to them. Bars has chosen the Hamiltonians arbitrarily as combinations of the generators of the conformal group and has chosen complicated and arbitrary gauges. We have presented simple gauge choices, in which, in a systematic way, arise in Hamiltonians with symmetry groups that are smaller than the former paragraph, i. e. , na arbitrary Hamiltonian with spin N/2, hadnt been obtained before.
TORTORELLA, ALFONSO GIUSEPPE. "Deformations of coisotropic submanifolds in Jacobi manifolds". Doctoral thesis, 2017. http://hdl.handle.net/2158/1077777.
Texto completo