Literatura académica sobre el tema "Bee sounds"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Bee sounds".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Bee sounds"
Di, Nayan, Muhammad Zahid Sharif, Zongwen Hu, Renjie Xue y Baizhong Yu. "Applicability of VGGish embedding in bee colony monitoring: comparison with MFCC in colony sound classification". PeerJ 11 (26 de enero de 2023): e14696. http://dx.doi.org/10.7717/peerj.14696.
Texto completoO.O., Zhukov y Horbenko V.I. "АДАПТИВНИЙ ПІДХІД ДО ВИЗНАЧЕННЯ СТАНУ ВУЛИКА ЗА ДОПОМОГОЮ НЕЙРОННИХ МЕРЕЖ ТА АНАЛІЗУ АУДІО". System technologies 4, n.º 153 (1 de mayo de 2024): 3–12. http://dx.doi.org/10.34185/1562-9945-4-153-2024-01.
Texto completoTerenzi, Alessandro, Stefania Cecchi y Susanna Spinsante. "On the Importance of the Sound Emitted by Honey Bee Hives". Veterinary Sciences 7, n.º 4 (31 de octubre de 2020): 168. http://dx.doi.org/10.3390/vetsci7040168.
Texto completoKeikhosrokiani, Pantea, A. Bhanupriya Naidu A/P Anathan, Suzi Iryanti Fadilah, Selvakumar Manickam y Zuoyong Li. "Heartbeat sound classification using a hybrid adaptive neuro-fuzzy inferences system (ANFIS) and artificial bee colony". DIGITAL HEALTH 9 (enero de 2023): 205520762211507. http://dx.doi.org/10.1177/20552076221150741.
Texto completoMüller, Andreas y Martin K. Obrist. "Simultaneous percussion by the larvae of a stem-nesting solitary bee – a collaborative defence strategy against parasitoid wasps?" Journal of Hymenoptera Research 81 (25 de febrero de 2021): 143–64. http://dx.doi.org/10.3897/jhr.81.61067.
Texto completoRibeiro, Alison Pereira, Nádia Felix Felipe da Silva, Fernanda Neiva Mesquita, Priscila de Cássia Souza Araújo, Thierson Couto Rosa y José Neiva Mesquita-Neto. "Machine learning approach for automatic recognition of tomato-pollinating bees based on their buzzing-sounds". PLOS Computational Biology 17, n.º 9 (16 de septiembre de 2021): e1009426. http://dx.doi.org/10.1371/journal.pcbi.1009426.
Texto completoANNA, TOMAŃSKA, CHORBIŃSKI PAWEŁ, KLIMOWICZ-BODYS MAŁGORZATA y MILL PHILIP. "Communication among animals and bioacoustics studies on bees." Medycyna Weterynaryjna 80, n.º 05 (2024): 6873–2024. http://dx.doi.org/10.21521/mw.6873.
Texto completoÇIĞ, Arzu, Arzu KOÇAK MUTLU y Nazire MİKAİL. "A different factor in the use of plants in landscape architecture: Sound (type, intensity and duration) in the example of Hyacinthus orientalis L." Notulae Botanicae Horti Agrobotanici Cluj-Napoca 51, n.º 3 (5 de septiembre de 2023): 13271. http://dx.doi.org/10.15835/nbha51313271.
Texto completoDushenkova, Tatiana Rudolfovna. "Cognitive metaphors and comparisons in Udmurt riddles about bees". Ethnic Culture 6, n.º 1 (15 de marzo de 2024): 8–12. http://dx.doi.org/10.31483/r-109039.
Texto completoQuaderi, Shah Jafor Sadeek, Sadia Afrin Labonno, Sadia Mostafa y Shamim Akhter. "Identify the Beehive Sound using Deep Learning". International Journal of Computer Science and Information Technology 14, n.º 4 (31 de agosto de 2022): 13–29. http://dx.doi.org/10.5121/ijcsit.2022.14402.
Texto completoTesis sobre el tema "Bee sounds"
Bricout, Augustin. "Instrumentation embarquée avec correction déterministe et exploitation par IA de capteurs électroniques : application à la surveillance de ruches". Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSEI019.
Texto completoThe objective of this thesis is to develop low-cost smart sensing solutions, enhancing inexpensive sensors through software-based corrections. Rather than designing high-performance but expensive sensors, this approach aims to create low-cost sensors that are then corrected and optimized via embedded algorithms. Recent electronic architectures now offer sufficient computational power to perform these corrections directly at the measurement source, known as edge computing, while maintaining extremely low energy consumption, making battery-powered systems viable.Two software correction approaches are explored: a method based on a deterministic algorithm, and a second method relying on artificial intelligence. After designing a data collection architecture suited for beehives, both approaches are implemented. The first, deterministic approach is used to correct data from strain gauges in the context of a hive scale. The second method is applied to MEMS audio sensors, to extract bee colony health metrics using machine learning techniques
Trevathan, Jeremy. "Sound transmission through walls: A coupled BEM/FEM approach". Thesis, University of Canterbury. Mechanical Engineering, 2005. http://hdl.handle.net/10092/5922.
Texto completoGEORGE, JOHN K. "ANALYTICAL, NUMERICAL AND EXPERIMENTAL CALCULATION OF SOUND TRANSMISSION LOSS CHARACTERISTICS OF SINGLE WALLED MUFFLER SHELLS". University of Cincinnati / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1181226367.
Texto completoLyvers, Christina M. "EVALUATION OF HANDLING EQUIPMENT SOUND PRESSURE LEVELS AS STRESSORS IN BEEF CATTLE". UKnowledge, 2013. http://uknowledge.uky.edu/bae_etds/13.
Texto completoWilsdorf, Michael, Gabi Fischer y Astrid Ziemann. "Einfluss der vertikalen Auflösung der Eingangsprofile bei einem Schallstrahlenmodell". Universität Leipzig, 2009. https://ul.qucosa.de/id/qucosa%3A16343.
Texto completoIn the following article, effects of the vertical resolution of input data on numerical sound attenuation simulations are investigated. The reason for this lies in the occurrence of a „layer problem“ during work with such a model. That means, even larger the vertical resolution of the input profiles is, so much more the calculated answer deviates from the analytic. Therefore, different vertical resolutions are examined. The analyzed results show that a higher resolution can solve this problem. Calculations are carried out using the sound ray model SMART which considers the dependency of sound ray propagation on stratified atmosphere. As a basis for calculating the sound ray paths interpolated and climatologically classified profiles of temperature and wind obtained from radiosonde data are utilized. These investigations provide a basis for the analysis and interpretation of attenuation calculations derived from a sound ray model.
Root, Pierce Denise Lyn. "Applying the Study of Bel Canto Vocal Technique to Artistic Horn Playing: Perfect Legato, Beautiful Sound, Agility, and Musical Expression". Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/272836.
Texto completoStruhařová, Michaela. "Zvuková postprodukce v oblasti reklamy a filmu, případová studie firmy Studio Beep s.r.o". Master's thesis, Vysoká škola ekonomická v Praze, 2012. http://www.nusl.cz/ntk/nusl-199246.
Texto completovon, Malmborg Solvej y Tony Martinsson. "Whee da-dum bee-dum : Melodisk kontur hos ljudlogotyper och dess påverkan på varumärkesuppfattning". Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-18605.
Texto completoAn audio logo, also called sonic logo or sound logo, is a sound composition utilized to differentiate a brand. A sonic logo is part of a brand’s strategy to create an image in the awareness of consumers. This image is called brand perception. The objective of this study was to expand general knowledge about music’s applicability for communicative purposes and moreover to specifically look at how melody affects brand perception. A web survey was conducted to investigate if different types of melodic contour in an audio logo can have different effects on the perception of brand identity for a fictional brand. Participants were recruited using social media. Eight videos consisting of an audio logo and a graphic logo were designed. The videos were identical apart from their melodic contours. Participants rated the degree to which they perceived five different personality traits for the audio logo they heard. The results were analyzed statistically. Through the survey, no support was generated for an impact from the type of melodic contour on the perception of the five personality traits. Appropriate methods for investigating audio logos and brand perception are discussed. For future research within the field qualitative design is suggested, as well asinvestigations into other musical parameters. Furthermore, additional research into melodic contour is proposed.
Schlittmeier, Sabine. "Arbeitsgedächtnis und Hintergrundschall : gibt es einen "irrelevant sound effect" bei auditiv präsentierten Items? /". Berlin : Logos-Verl, 2005. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=013201496&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Texto completoDefine, Lynn Dorsey. "Popular Culture, Thomas Beer, and the Making of "The Sound and the Fury"". W&M ScholarWorks, 1994. https://scholarworks.wm.edu/etd/1539625894.
Texto completoLibros sobre el tema "Bee sounds"
Dijs, Carla. Bee says buzzzz. New York, N.Y: H. Holt, 1986.
Buscar texto completoKorman, Justine. Bee movie. Des Moines, Iowa: Meredith Books, 2007.
Buscar texto completoDijs, Carla. Bee says buzz. (Swindon): Child's Play, 1986.
Buscar texto completoill, Giacobbe Beppe, ed. Clang-clang! Beep-beep!: Listen to the city. New York: Simon & Schuster Books for Young Readers, 2009.
Buscar texto completoWhybrow, Ian. The noisy way to bed. New York: Arthur A. Levine Books, 2004.
Buscar texto completoWhybrow, Ian. The noisy way to bed. London: Macmillan Children's, 2003.
Buscar texto completoSachs, Marilyn. At the sound of the beep. New York: Dutton Children's Books, 1990.
Buscar texto completoGarcia, Emma. Toot toot beep beep. [London, England]: Boxer Books, 2013.
Buscar texto completoill, Wilson-Max Ken, ed. The baby goes beep. Brookfield, Conn: Roaring Brook Press, 2003.
Buscar texto completoMumford, Thomas F. Kelp and eelgrass in Puget Sound. [Seattle, Wash: Seattle District, U.S. Army Corps of Engineers, 2007.
Buscar texto completoCapítulos de libros sobre el tema "Bee sounds"
Goodwin, Simon N. "Panning Sounds for Speakers and Headphones". En Beep to Boom, 183–95. New York, NY : Routledge, 2019. | Series: Audio engineering society presents …: Routledge, 2019. http://dx.doi.org/10.4324/9781351005548-18.
Texto completoPavan, Gianni, Gregory Budney, Holger Klinck, Hervé Glotin, Dena J. Clink y Jeanette A. Thomas. "History of Sound Recording and Analysis Equipment". En Exploring Animal Behavior Through Sound: Volume 1, 1–36. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97540-1_1.
Texto completoGoodwin, Simon N. "Ambisonic Surround-Sound Principles and Practice". En Beep to Boom, 197–223. New York, NY : Routledge, 2019. | Series: Audio engineering society presents …: Routledge, 2019. http://dx.doi.org/10.4324/9781351005548-19.
Texto completoSchoeman, Renée P., Christine Erbe, Gianni Pavan, Roberta Righini y Jeanette A. Thomas. "Analysis of Soundscapes as an Ecological Tool". En Exploring Animal Behavior Through Sound: Volume 1, 217–67. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97540-1_7.
Texto completoWang, Changlu y Richard Cooper. "Environmentally Sound Bed Bug Management Solutions". En Urban Pest Management, 11–35. 2a ed. GB: CABI, 2023. http://dx.doi.org/10.1079/9781800622944.0002.
Texto completoCejrowski, Tymoteusz, Julian Szymański, Higinio Mora y David Gil. "Detection of the Bee Queen Presence Using Sound Analysis". En Intelligent Information and Database Systems, 297–306. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75420-8_28.
Texto completoReuter, Anders. "We have always been modular". En The Routledge Handbook of Sound Design, 291–303. London: Focal Press, 2024. http://dx.doi.org/10.4324/9781003325567-20.
Texto completo"Winter Sounds". En How the World Looks to a Bee, 9–10. Indiana University Press, 2020. http://dx.doi.org/10.2307/j.ctvwh8dr6.9.
Texto completo"Vibratory and Airborne-Sound Signals in Bee Communication (Hymenoptera)". En Insect Sounds and Communication, 439–54. CRC Press, 2005. http://dx.doi.org/10.1201/9781420039337-38.
Texto completoBarth, Friedrich, Michael Hrncir y Jurgen Tautz. "Vibratory and Airborne-Sound Signals in Bee Communication (Hymenoptera)". En Insect Sounds and Communication, 421–36. CRC Press, 2005. http://dx.doi.org/10.1201/9781420039337.ch32.
Texto completoActas de conferencias sobre el tema "Bee sounds"
Johnson, Gregory, Kenneth Dykstra, Ryan Cassidy y James Spilsbury. "VDES R-Mode Test Bed in Long Island Sound". En 37th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2024), 523–38. Institute of Navigation, 2024. http://dx.doi.org/10.33012/2024.19681.
Texto completoLafuma, Louis, Guillaume Bouyer, Jean-Yves Didier y Olivier Goguel. "Brightness Is More Efficient Than Delay to Induce Weight Perception in Augmented Reality". En ICAD 2024: The 29th International Conference on Auditory Display, 73–80. icad.org: International Community for Auditory Display, 2024. http://dx.doi.org/10.21785/icad2024.011.
Texto completoBorgianni, Luca, Md Sabbir Ahmed, Davide Adami y Stefano Giordano. "Spectrogram Based Bee Sound Analysis with DNNs: a step toward Federated Learning approach". En 2023 4th International Symposium on the Internet of Sounds. IEEE, 2023. http://dx.doi.org/10.1109/ieeeconf59510.2023.10335200.
Texto completoAumann, Herbert M. y Nuri W. Emanetoglu. "The radar microphone: A new way of monitoring honey bee sounds". En 2016 IEEE SENSORS. IEEE, 2016. http://dx.doi.org/10.1109/icsens.2016.7808865.
Texto completoMatsumoto, Hiroki, Kohshi Nishida y Ken-ichi Saitoh. "Characteristics of Aerodynamic Sound Sources Generated by Coiled Wires in a Uniform Air Flow". En ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33408.
Texto completoMekha, Panuwat, Nutnicha Teeyasuksaet, Tanapong Sompowloy y Khukrit Osathanunkul. "Honey Bee Sound Classification Using Spectrogram Image Features". En 2022 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT & NCON). IEEE, 2022. http://dx.doi.org/10.1109/ectidamtncon53731.2022.9720352.
Texto completoSchmidmaier, Matthias, Heinrich Hußmann y Dominik Maurice Runge. "Beep Beep: Building Trust with Sound". En CHI '20: CHI Conference on Human Factors in Computing Systems. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3334480.3382848.
Texto completoGodinho, L., D. Soares y P. G. Santos. "An ACA-MFS approach for the analysis of sound propagation in sonic crystals". En BEM/MRM 38. Southampton, UK: WIT Press, 2015. http://dx.doi.org/10.2495/bem380021.
Texto completoYang, Yunlai, Wei Li, Fahd A. Almalki y Maher I. Almarhoon. "A Tool for Derivation of Real Time Lithological Information from Drill Bit Sound". En SPE Middle East Oil & Gas Show and Conference. SPE, 2021. http://dx.doi.org/10.2118/204895-ms.
Texto completoTadeu, A., J. António y I. Castro. "Sound pressure attenuation provided by a 3D rigid acoustic barrier on a building façade: the influence of its longitudinal shape". En BEM/MRM2012. Southampton, UK: WIT Press, 2012. http://dx.doi.org/10.2495/be120221.
Texto completoInformes sobre el tema "Bee sounds"
Job, Jacob. Mesa Verde National Park: Acoustic monitoring report. National Park Service, julio de 2021. http://dx.doi.org/10.36967/nrr-2286703.
Texto completoOlstad, Tyra, Erik Meyer, Erik Meyer y Tyra Olstad. Carlsbad Caverns National Park: Acoustic monitoring report, 2019. National Park Service, 2024. http://dx.doi.org/10.36967/2305265.
Texto completoGreiner, John. Standard ML Weak Polymorphism Can Be Sound. Fort Belvoir, VA: Defense Technical Information Center, mayo de 1993. http://dx.doi.org/10.21236/ada267839.
Texto completoRutledge, Annamarie y Leslie (Leslie Alyson) Brandt. Puget Sound Region. Houghton, MI: USDA Northern Forests Climate, junio de 2023. http://dx.doi.org/10.32747/2023.8054016.ch.
Texto completoValdes, James R. y Heather Furey. WHOI 260Hz Sound Source - Tuning and Assembly. Woods Hole Oceanographic Institution, abril de 2021. http://dx.doi.org/10.1575/1912/27173.
Texto completoAlbert, Donald G. Calculations of Inhomogeneous Ground Effects in Outdoor Sound Propagation Using the Boundary Element Method (BEM). Fort Belvoir, VA: Defense Technical Information Center, abril de 2004. http://dx.doi.org/10.21236/ada430712.
Texto completoJay. L51723 Guidelines for Sound Power Level Measurements Compressor Equipment. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), diciembre de 1994. http://dx.doi.org/10.55274/r0010419.
Texto completoPabón Méndez, Mónica Rocío, Silvia Andrea Tarazona Ariza, Alfredo Duarte Fletcher y Nelly Johana Álvarez Idarraga. English Vowel Sounds: A Practical Guide for the EFL Classroom. Ediciones Universidad Cooperativa de Colombia, febrero de 2023. http://dx.doi.org/10.16925/gcgp.78.
Texto completoValentine-Darby, Patricia, Kimberly Struthers y Dale McPherson. Natural resource conditions at Cedar Creek & Belle Grove National Historical Park: Findings & management considerations for selected resources. National Park Service, 2024. http://dx.doi.org/10.36967/2303413.
Texto completoCrocker, Malcolm, P. Raju y S. Yang. NPR199201 Standard Sound Power Level Specification and Measurement Procedure. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), octubre de 1992. http://dx.doi.org/10.55274/r0011640.
Texto completo