Literatura académica sobre el tema "Bayesian Structural Time Series Models"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Bayesian Structural Time Series Models".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Bayesian Structural Time Series Models"
Almarashi, Abdullah M. y Khushnoor Khan. "Bayesian Structural Time Series". Nanoscience and Nanotechnology Letters 12, n.º 1 (1 de enero de 2020): 54–61. http://dx.doi.org/10.1166/nnl.2020.3083.
Texto completoHall, Jamie, Michael K. Pitt y Robert Kohn. "Bayesian inference for nonlinear structural time series models". Journal of Econometrics 179, n.º 2 (abril de 2014): 99–111. http://dx.doi.org/10.1016/j.jeconom.2013.10.016.
Texto completoWang, Yi-Fu y Tsai-Hung Fan. "A Bayesian analysis on time series structural equation models". Journal of Statistical Planning and Inference 141, n.º 6 (junio de 2011): 2071–78. http://dx.doi.org/10.1016/j.jspi.2010.12.017.
Texto completoBrodersen, Kay H., Fabian Gallusser, Jim Koehler, Nicolas Remy y Steven L. Scott. "Inferring causal impact using Bayesian structural time-series models". Annals of Applied Statistics 9, n.º 1 (marzo de 2015): 247–74. http://dx.doi.org/10.1214/14-aoas788.
Texto completoKalinina, Irina A. y Aleksandr P. Gozhyj. "Modeling and forecasting of nonlinear nonstationary processes based on the Bayesian structural time series". Applied Aspects of Information Technology 5, n.º 3 (25 de octubre de 2022): 240–55. http://dx.doi.org/10.15276/aait.05.2022.17.
Texto completoAL-Moders, Ali Hussein y Tasnim H. Kadhim. "Bayesian Structural Time Series for Forecasting Oil Prices". Ibn AL- Haitham Journal For Pure and Applied Sciences 34, n.º 2 (20 de abril de 2021): 100–107. http://dx.doi.org/10.30526/34.2.2631.
Texto completoChaturvedi, Anoop y Jitendra Kumar. "Bayesian Unit Root Test for Time Series Models with Structural Breaks". American Journal of Mathematical and Management Sciences 27, n.º 1-2 (enero de 2007): 243–68. http://dx.doi.org/10.1080/01966324.2007.10737699.
Texto completoFildes, Robert. "Forecasting, Structural Time Series Models and the Kalman Filter: Bayesian Forecasting and Dynamic Models". Journal of the Operational Research Society 42, n.º 11 (noviembre de 1991): 1031–33. http://dx.doi.org/10.1057/jors.1991.194.
Texto completoKang, Jin-Su, Stephen Thomas Downing, Nabangshu Sinha y Yi-Chieh Chen. "Advancing Causal Inference: Differences-in-Differences vs. Bayesian Structural Time Series Models". Academy of Management Proceedings 2021, n.º 1 (agosto de 2021): 15410. http://dx.doi.org/10.5465/ambpp.2021.15410abstract.
Texto completoJeong, Chulwoo y Jaehee Kim. "Bayesian multiple structural change-points estimation in time series models with genetic algorithm". Journal of the Korean Statistical Society 42, n.º 4 (diciembre de 2013): 459–68. http://dx.doi.org/10.1016/j.jkss.2013.02.001.
Texto completoTesis sobre el tema "Bayesian Structural Time Series Models"
Murphy, James Kevin. "Hidden states, hidden structures : Bayesian learning in time series models". Thesis, University of Cambridge, 2014. https://www.repository.cam.ac.uk/handle/1810/250355.
Texto completoWigren, Richard y Filip Cornell. "Marketing Mix Modelling: A comparative study of statistical models". Thesis, Linköpings universitet, Institutionen för datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-160082.
Texto completoRahier, Thibaud. "Réseaux Bayésiens pour fusion de données statiques et temporelles". Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAM083/document.
Texto completoPrediction and inference on temporal data is very frequently performed using timeseries data alone. We believe that these tasks could benefit from leveraging the contextual metadata associated to timeseries - such as location, type, etc. Conversely, tasks involving prediction and inference on metadata could benefit from information held within timeseries. However, there exists no standard way of jointly modeling both timeseries data and descriptive metadata. Moreover, metadata frequently contains highly correlated or redundant information, and may contain errors and missing values.We first consider the problem of learning the inherent probabilistic graphical structure of metadata as a Bayesian Network. This has two main benefits: (i) once structured as a graphical model, metadata is easier to use in order to improve tasks on temporal data and (ii) the learned model enables inference tasks on metadata alone, such as missing data imputation. However, Bayesian network structure learning is a tremendous mathematical challenge, that involves a NP-Hard optimization problem. We present a tailor-made structure learning algorithm, inspired from novel theoretical results, that exploits (quasi)-determinist dependencies that are typically present in descriptive metadata. This algorithm is tested on numerous benchmark datasets and some industrial metadatasets containing deterministic relationships. In both cases it proved to be significantly faster than state of the art, and even found more performant structures on industrial data. Moreover, learned Bayesian networks are consistently sparser and therefore more readable.We then focus on designing a model that includes both static (meta)data and dynamic data. Taking inspiration from state of the art probabilistic graphical models for temporal data (Dynamic Bayesian Networks) and from our previously described approach for metadata modeling, we present a general methodology to jointly model metadata and temporal data as a hybrid static-dynamic Bayesian network. We propose two main algorithms associated to this representation: (i) a learning algorithm, which while being optimized for industrial data, is still generalizable to any task of static and dynamic data fusion, and (ii) an inference algorithm, enabling both usual tasks on temporal or static data alone, and tasks using the two types of data.%We then provide results on diverse cross-field applications such as forecasting, metadata replenishment from timeseries and alarms dependency analysis using data from some of Schneider Electric’s challenging use-cases.Finally, we discuss some of the notions introduced during the thesis, including ways to measure the generalization performance of a Bayesian network by a score inspired from the cross-validation procedure from supervised machine learning. We also propose various extensions to the algorithms and theoretical results presented in the previous chapters, and formulate some research perspectives
Bracegirdle, C. I. "Inference in Bayesian time-series models". Thesis, University College London (University of London), 2013. http://discovery.ucl.ac.uk/1383529/.
Texto completoJohnson, Matthew James Ph D. Massachusetts Institute of Technology. "Bayesian time series models and scalable inference". Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/89993.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 197-206).
With large and growing datasets and complex models, there is an increasing need for scalable Bayesian inference. We describe two lines of work to address this need. In the first part, we develop new algorithms for inference in hierarchical Bayesian time series models based on the hidden Markov model (HMM), hidden semi-Markov model (HSMM), and their Bayesian nonparametric extensions. The HMM is ubiquitous in Bayesian time series models, and it and its Bayesian nonparametric extension, the hierarchical Dirichlet process hidden Markov model (HDP-HMM), have been applied in many settings. HSMMs and HDP-HSMMs extend these dynamical models to provide state-specific duration modeling, but at the cost of increased computational complexity for inference, limiting their general applicability. A challenge with all such models is scaling inference to large datasets. We address these challenges in several ways. First, we develop classes of duration models for which HSMM message passing complexity scales only linearly in the observation sequence length. Second, we apply the stochastic variational inference (SVI) framework to develop scalable inference for the HMM, HSMM, and their nonparametric extensions. Third, we build on these ideas to define a new Bayesian nonparametric model that can capture dynamics at multiple timescales while still allowing efficient and scalable inference. In the second part of this thesis, we develop a theoretical framework to analyze a special case of a highly parallelizable sampling strategy we refer to as Hogwild Gibbs sampling. Thorough empirical work has shown that Hogwild Gibbs sampling works very well for inference in large latent Dirichlet allocation models (LDA), but there is little theory to understand when it may be effective in general. By studying Hogwild Gibbs applied to sampling from Gaussian distributions we develop analytical results as well as a deeper understanding of its behavior, including its convergence and correctness in some regimes.
by Matthew James Johnson.
Ph. D.
Qiang, Fu. "Bayesian multivariate time series models for forecasting European macroeconomic series". Thesis, University of Hull, 2000. http://hydra.hull.ac.uk/resources/hull:8068.
Texto completoFernandes, Cristiano Augusto Coelho. "Non-Gaussian structural time series models". Thesis, London School of Economics and Political Science (University of London), 1991. http://etheses.lse.ac.uk/1208/.
Texto completoQueen, Catriona M. "Bayesian graphical forecasting models for business time series". Thesis, University of Warwick, 1991. http://wrap.warwick.ac.uk/4321/.
Texto completoPope, Kenneth James. "Time series analysis". Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318445.
Texto completoSurapaitoolkorn, Wantanee. "Bayesian inference for volatility models in financial time series". Thesis, Imperial College London, 2006. http://hdl.handle.net/10044/1/1249.
Texto completoLibros sobre el tema "Bayesian Structural Time Series Models"
Barber, David, A. Taylan Cemgil y Silvia Chiappa, eds. Bayesian Time Series Models. Cambridge: Cambridge University Press, 2009. http://dx.doi.org/10.1017/cbo9780511984679.
Texto completoBarber, David. Bayesian time series models. Cambridge: Cambridge University Press, 2011.
Buscar texto completoC, Spall James, ed. Bayesian analysis of time series and dynamic models. New York: Dekker, 1988.
Buscar texto completoQueen, Catriona M. Bayesian graphical forecasting models for business time series. [s.l.]: typescript, 1991.
Buscar texto completoKoop, Gary. Bayesian long-run prediction in time series models. Kraków: Cracow Academy of Economics, 1992.
Buscar texto completoDas, Monidipa y Soumya K. Ghosh. Enhanced Bayesian Network Models for Spatial Time Series Prediction. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-27749-9.
Texto completoBarbosa, Emanuel Pimentel. Dynamic Bayesian models for vector time series analysis & forecasting. [s.l.]: typescript, 1989.
Buscar texto completo1948-, Palm Franz C. y Zellner Arnold, eds. The structural econometric time series analysis approach. Cambridge: Cambridge University Press, 2004.
Buscar texto completoHarvey, A. C. Forecasting, structural time series models and the Kalman filter. Cambridge: Cambridge University Press, 1989.
Buscar texto completoForecasting, structural time series models, and the Kalman filter. Cambridge: Cambridge University Press, 1990.
Buscar texto completoCapítulos de libros sobre el tema "Bayesian Structural Time Series Models"
Aguilar, Omar. "Latent Structure Analyses of Turbulence Data Using Wavelets and Time Series Decompositions". En Bayesian Inference in Wavelet-Based Models, 381–94. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-0567-8_23.
Texto completoHooten, Mevin B. y Trevor J. Hefley. "Time Series Models". En Bringing Bayesian Models to Life, 143–73. Boca Raton, FL : CRC Press, Taylor & Francis Group, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9780429243653-16.
Texto completoAbril, Juan Carlos. "Structural Time Series Models". En International Encyclopedia of Statistical Science, 1555–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-04898-2_577.
Texto completoBerliner, L. Mark. "Hierarchical Bayesian Time Series Models". En Maximum Entropy and Bayesian Methods, 15–22. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-011-5430-7_3.
Texto completoBroemeling, Lyle D. "Basic Random Models". En Bayesian Analysis of Time Series, 69–92. Boca Raton : CRC Press, Taylor & Francis Group, 2019.: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429488443-4.
Texto completoBroemeling, Lyle D. "Dynamic Linear Models". En Bayesian Analysis of Time Series, 179–220. Boca Raton : CRC Press, Taylor & Francis Group, 2019.: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429488443-8.
Texto completoRavishanker, Nalini, Balaji Raman y Refik Soyer. "Bayesian Analysis". En Dynamic Time Series Models using R-INLA, 1–16. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003134039-1.
Texto completoHeld, Leonhard y Daniel Sabanés Bové. "Markov Models for Time Series Analysis". En Likelihood and Bayesian Inference, 315–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-60792-3_10.
Texto completoGómez, Víctor. "Multivariate Structural Models". En Linear Time Series with MATLAB and OCTAVE, 245–62. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20790-8_7.
Texto completoWest, Mike y Julia Mortera. "Bayesian Models and Methods for Binary Time Series". En Probability and Bayesian Statistics, 487–95. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1885-9_50.
Texto completoActas de conferencias sobre el tema "Bayesian Structural Time Series Models"
Kalinina, Irina, Peter Bidyuk y Aleksandr Gozhyj. "Construction of Forecast Models based on Bayesian Structural Time Series". En 2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT). IEEE, 2022. http://dx.doi.org/10.1109/csit56902.2022.10000484.
Texto completoHuq, Armana y Shahrin Islam. "A Bayesian Structural Time Series Model for Assessing Road Traffic Accidents during COVID-19 Period". En The 6th International Conference on Civil, Structural and Transportation Engineering. Avestia Publishing, 2021. http://dx.doi.org/10.11159/iccste21.166.
Texto completoHan, Jiyeon, Kyowoon Lee, Anh Tong y Jaesik Choi. "Confirmatory Bayesian Online Change Point Detection in the Covariance Structure of Gaussian Processes". En Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/340.
Texto completoHoernle, Nicholas, Kobi Gal, Barbara Grosz, Leilah Lyons, Ada Ren y Andee Rubin. "Interpretable Models for Understanding Immersive Simulations". En Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/321.
Texto completoHOLLKAMP, J. y S. BATILL. "Time series models for nonlinear systems". En 30th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-1197.
Texto completoShaffery, Peter, Rui Yang y Yingchen Zhang. "Bayesian Structural Time Series for Behind-the-Meter Photovoltaic Disaggregation". En 2020 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). IEEE, 2020. http://dx.doi.org/10.1109/isgt45199.2020.9087675.
Texto completoREILLY, JACK y BRANKO GLISIC. "Long Term Sensor Malfunction Detection and Data Regeneration using Autoregressive Time Series Models". En Structural Health Monitoring 2017. Lancaster, PA: DEStech Publications, Inc., 2017. http://dx.doi.org/10.12783/shm2017/14211.
Texto completoAMER, AHMAD y FOTIS KOPSAFTOPOULOS. "Probabilistic Damage Quantification via the Integration of Non- parametric Time-Series and Gaussian Process Regression Models". En Structural Health Monitoring 2019. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/shm2019/32379.
Texto completoHOLLKAMP, J. y S. BATILL. "An experimental study of noise bias in discrete time series models". En 30th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-1193.
Texto completoBATILL, S. y J. HOLLKAMP. "Parameter identification of discrete time series models for transient response prediction". En 29th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-2231.
Texto completoInformes sobre el tema "Bayesian Structural Time Series Models"
Mazzoni, Silvia, Nicholas Gregor, Linda Al Atik, Yousef Bozorgnia, David Welch y Gregory Deierlein. Probabilistic Seismic Hazard Analysis and Selecting and Scaling of Ground-Motion Records (PEER-CEA Project). Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, noviembre de 2020. http://dx.doi.org/10.55461/zjdn7385.
Texto completo