Siga este enlace para ver otros tipos de publicaciones sobre el tema: Bayesian Sample size.

Artículos de revistas sobre el tema "Bayesian Sample size"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Bayesian Sample size".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Nassar, M. M., S. M. Khamis y S. S. Radwan. "On Bayesian sample size determination". Journal of Applied Statistics 38, n.º 5 (mayo de 2011): 1045–54. http://dx.doi.org/10.1080/02664761003758992.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Pham-Gia, T. y N. Turkkan. "Sample Size Determination in Bayesian Analysis". Statistician 41, n.º 4 (1992): 389. http://dx.doi.org/10.2307/2349003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Sobel, Marc y Ibrahim Turkoz. "Bayesian blinded sample size re-estimation". Communications in Statistics - Theory and Methods 47, n.º 24 (8 de diciembre de 2017): 5916–33. http://dx.doi.org/10.1080/03610926.2017.1404097.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Wang, Ming-Dauh. "Sample Size Reestimation by Bayesian Prediction". Biometrical Journal 49, n.º 3 (junio de 2007): 365–77. http://dx.doi.org/10.1002/bimj.200310273.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Wang, Ming-Dauh. "Sample Size Reestimation by Bayesian Prediction". Biometrical Journal 49, n.º 3 (junio de 2007): NA. http://dx.doi.org/10.1002/bimj.200510273.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

JOSEPH, LAWRENCE, ROXANE DU BERGER y PATRICK BÉLISLE. "BAYESIAN AND MIXED BAYESIAN/LIKELIHOOD CRITERIA FOR SAMPLE SIZE DETERMINATION". Statistics in Medicine 16, n.º 7 (15 de abril de 1997): 769–81. http://dx.doi.org/10.1002/(sici)1097-0258(19970415)16:7<769::aid-sim495>3.0.co;2-v.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

De Santis, Fulvio. "Sample Size Determination for Robust Bayesian Analysis". Journal of the American Statistical Association 101, n.º 473 (marzo de 2006): 278–91. http://dx.doi.org/10.1198/016214505000000510.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Weiss, Robert. "Bayesian sample size calculations for hypothesis testing". Journal of the Royal Statistical Society: Series D (The Statistician) 46, n.º 2 (julio de 1997): 185–91. http://dx.doi.org/10.1111/1467-9884.00075.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Katsis, Athanassios y Blaza Toman. "Bayesian sample size calculations for binomial experiments". Journal of Statistical Planning and Inference 81, n.º 2 (noviembre de 1999): 349–62. http://dx.doi.org/10.1016/s0378-3758(99)00019-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Clarke, B. y Ao Yuan. "Closed form expressions for Bayesian sample size". Annals of Statistics 34, n.º 3 (junio de 2006): 1293–330. http://dx.doi.org/10.1214/009053606000000308.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

M'Lan, Cyr E., Lawrence Joseph y David B. Wolfson. "Bayesian sample size determination for binomial proportions". Bayesian Analysis 3, n.º 2 (junio de 2008): 269–96. http://dx.doi.org/10.1214/08-ba310.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Zhang, Xiao, Gary Cutter y Thomas Belin. "Bayesian sample size determination under hypothesis tests". Contemporary Clinical Trials 32, n.º 3 (mayo de 2011): 393–98. http://dx.doi.org/10.1016/j.cct.2010.12.012.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Joseph, Lawrence, David B. Wolfson y Roxane du Berger. "Some Comments on Bayesian Sample Size Determination". Statistician 44, n.º 2 (1995): 167. http://dx.doi.org/10.2307/2348442.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Nassar, M. M., S. M. Khamis y S. S. Radwan. "Geometric sample size determination in Bayesian analysis". Journal of Applied Statistics 37, n.º 4 (3 de marzo de 2010): 567–75. http://dx.doi.org/10.1080/02664760902803248.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Pham-Gia, T. "On Bayesian analysis, Bayesian decision theory and the sample size problem". Journal of the Royal Statistical Society: Series D (The Statistician) 46, n.º 2 (julio de 1997): 139–44. http://dx.doi.org/10.1111/1467-9884.00069.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Sanz-Alonso, Daniel y Zijian Wang. "Bayesian Update with Importance Sampling: Required Sample Size". Entropy 23, n.º 1 (26 de diciembre de 2020): 22. http://dx.doi.org/10.3390/e23010022.

Texto completo
Resumen
Importance sampling is used to approximate Bayes’ rule in many computational approaches to Bayesian inverse problems, data assimilation and machine learning. This paper reviews and further investigates the required sample size for importance sampling in terms of the χ2-divergence between target and proposal. We illustrate through examples the roles that dimension, noise-level and other model parameters play in approximating the Bayesian update with importance sampling. Our examples also facilitate a new direct comparison of standard and optimal proposals for particle filtering.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

ChiChang Chang y KuoHsiung Liao. "Bayesian Sample-size Determination for Medical Decision Making". International Journal of Advancements in Computing Technology 5, n.º 8 (30 de abril de 2013): 1190–97. http://dx.doi.org/10.4156/ijact.vol5.issue8.132.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

De Santis, Fulvio. "Using historical data for Bayesian sample size determination". Journal of the Royal Statistical Society: Series A (Statistics in Society) 170, n.º 1 (enero de 2007): 95–113. http://dx.doi.org/10.1111/j.1467-985x.2006.00438.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Sadia, Farhana y Syed S. Hossain. "Contrast of Bayesian and Classical Sample Size Determination". Journal of Modern Applied Statistical Methods 13, n.º 2 (1 de noviembre de 2014): 420–31. http://dx.doi.org/10.22237/jmasm/1414815720.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Brakenhoff, TB, KCB Roes y S. Nikolakopoulos. "Bayesian sample size re-estimation using power priors". Statistical Methods in Medical Research 28, n.º 6 (2 de mayo de 2018): 1664–75. http://dx.doi.org/10.1177/0962280218772315.

Texto completo
Resumen
The sample size of a randomized controlled trial is typically chosen in order for frequentist operational characteristics to be retained. For normally distributed outcomes, an assumption for the variance needs to be made which is usually based on limited prior information. Especially in the case of small populations, the prior information might consist of only one small pilot study. A Bayesian approach formalizes the aggregation of prior information on the variance with newly collected data. The uncertainty surrounding prior estimates can be appropriately modelled by means of prior distributions. Furthermore, within the Bayesian paradigm, quantities such as the probability of a conclusive trial are directly calculated. However, if the postulated prior is not in accordance with the true variance, such calculations are not trustworthy. In this work we adapt previously suggested methodology to facilitate sample size re-estimation. In addition, we suggest the employment of power priors in order for operational characteristics to be controlled.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

M'Lan, Cyr Emile, Lawrence Joseph y David B. Wolfson. "Bayesian Sample Size Determination for Case-Control Studies". Journal of the American Statistical Association 101, n.º 474 (1 de junio de 2006): 760–72. http://dx.doi.org/10.1198/016214505000001023.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Inoue, Lurdes Y. T., Donald A. Berry y Giovanni Parmigiani. "Relationship Between Bayesian and Frequentist Sample Size Determination". American Statistician 59, n.º 1 (febrero de 2005): 79–87. http://dx.doi.org/10.1198/000313005x21069.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Pham-Gia, T. "Sample Size Determination in Bayesian Statistics-A Commentary". Statistician 44, n.º 2 (1995): 163. http://dx.doi.org/10.2307/2348441.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Brutti, Pierpaolo, Fulvio De Santis y Stefania Gubbiotti. "Robust Bayesian sample size determination in clinical trials". Statistics in Medicine 27, n.º 13 (2008): 2290–306. http://dx.doi.org/10.1002/sim.3175.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Wang, Yu, Zheng Guan y Tengyuan Zhao. "Sample size determination in geotechnical site investigation considering spatial variation and correlation". Canadian Geotechnical Journal 56, n.º 7 (julio de 2019): 992–1002. http://dx.doi.org/10.1139/cgj-2018-0474.

Texto completo
Resumen
Site investigation is a fundamental element in geotechnical engineering practice, but only a small portion of geomaterials is sampled and tested during site investigation. This leads to a question of sample size determination: how many samples are needed to achieve a target level of accuracy for the results inferred from the samples? Sample size determination is a well-known topic in statistics and has many applications in a wide variety of areas. However, conventional statistical methods, which mainly deal with independent data, only have limited applications in geotechnical site investigation because geotechnical data are not independent, but spatially varying and correlated. Existing design codes around the world (e.g., Eurocode 7) only provide conceptual principles on sample size determination. No scientific or quantitative method is available for sample size determination in site investigation considering spatial variation and correlation of geotechnical properties. This study performs an extensive parametric study and develops a statistical chart for sample size determination with consideration of spatial variation and correlation using Bayesian compressive sensing or sampling. Real cone penetration test data and real laboratory test data are used to illustrate application of the proposed statistical chart, and the method is shown to perform well.
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Kuen Cheung, Ying. "Sample size formulae for the Bayesian continual reassessment method". Clinical Trials: Journal of the Society for Clinical Trials 10, n.º 6 (21 de agosto de 2013): 852–61. http://dx.doi.org/10.1177/1740774513497294.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

DasGupta, Anirban y Brani Vidakovic. "Sample size problems in ANOVA Bayesian point of view". Journal of Statistical Planning and Inference 65, n.º 2 (diciembre de 1997): 335–47. http://dx.doi.org/10.1016/s0378-3758(97)00056-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Joseph, Lawrence y Patrick Bélisle. "Bayesian consensus‐based sample size criteria for binomial proportions". Statistics in Medicine 38, n.º 23 (11 de julio de 2019): 4566–73. http://dx.doi.org/10.1002/sim.8316.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Hand, Austin L., James D. Stamey y Dean M. Young. "Bayesian sample-size determination for two independent Poisson rates". Computer Methods and Programs in Biomedicine 104, n.º 2 (noviembre de 2011): 271–77. http://dx.doi.org/10.1016/j.cmpb.2010.10.010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Lan, KK Gordan y Janet T. Wittes. "Some thoughts on sample size: A Bayesian-frequentist hybrid approach". Clinical Trials 9, n.º 5 (3 de agosto de 2012): 561–69. http://dx.doi.org/10.1177/1740774512453784.

Texto completo
Resumen
Background Traditional calculations of sample size do not formally incorporate uncertainty about the likely effect size. Use of a normal prior to express that uncertainty, as recently recommended, can lead to power that does not approach 1 as the sample size approaches infinity. Purpose To provide approaches for calculating sample size and power that formally incorporate uncertainty about effect size. The relevant formulas should ensure that power approaches one as sample size increases indefinitely and should be easy to calculate. Methods We examine normal, truncated normal, and gamma priors for effect size computationally and demonstrate analytically an approach to approximating the power for a truncated normal prior. We also propose a simple compromise method that requires a moderately larger sample size than the one derived from the fixed effect method. Results Use of a realistic prior distribution instead of a fixed treatment effect is likely to increase the sample size required for a Phase 3 trial. The standard fixed effect method for moving from estimates of effect size obtained in a Phase 2 trial to the sample size of a Phase 3 trial ignores the variability inherent in the estimate from Phase 2. Truncated normal priors appear to require unrealistically large sample sizes while gamma priors appear to place too much probability on large effect sizes and therefore produce unrealistically high power. Limitations The article deals with a few examples and a limited range of parameters. It does not deal explicitly with binary or time-to-failure data. Conclusions Use of the standard fixed approach to sample size calculation often yields a sample size leading to lower power than desired. Other natural parametric priors lead either to unacceptably large sample sizes or to unrealistically high power. We recommend an approach that is a compromise between assuming a fixed effect size and assigning a normal prior to the effect size.
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Cressie, Noel y Jonathan Biele. "A Sample-Size-Optimal Bayesian Procedure for Sequential Pharmaceutical Trials". Biometrics 50, n.º 3 (septiembre de 1994): 700. http://dx.doi.org/10.2307/2532784.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Islam, A. F. M. Saiful y Lawrence I. Pettit. "Bayesian sample size determination for the bounded linex loss function". Journal of Statistical Computation and Simulation 84, n.º 8 (7 de enero de 2013): 1644–53. http://dx.doi.org/10.1080/00949655.2012.757766.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Sahu, S. K. y T. M. F. Smith. "A Bayesian method of sample size determination with practical applications". Journal of the Royal Statistical Society: Series A (Statistics in Society) 169, n.º 2 (marzo de 2006): 235–53. http://dx.doi.org/10.1111/j.1467-985x.2006.00408.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Pezeshk, Hamid, Nader Nematollahi, Vahed Maroufy y John Gittins. "The choice of sample size: a mixed Bayesian / frequentist approach". Statistical Methods in Medical Research 18, n.º 2 (29 de abril de 2008): 183–94. http://dx.doi.org/10.1177/0962280208089298.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Islam, A. F. M. Saiful y L. I. Pettit. "Bayesian Sample Size Determination Using Linex Loss and Linear Cost". Communications in Statistics - Theory and Methods 41, n.º 2 (15 de enero de 2012): 223–40. http://dx.doi.org/10.1080/03610926.2010.521279.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Jones, P. W. y S. A. Madhi. "Bayesian minimum sample size designs for the bernoulli selection problem". Sequential Analysis 7, n.º 1 (enero de 1988): 1–10. http://dx.doi.org/10.1080/07474948808836139.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

De Santis, Fulvio. "Statistical evidence and sample size determination for Bayesian hypothesis testing". Journal of Statistical Planning and Inference 124, n.º 1 (agosto de 2004): 121–44. http://dx.doi.org/10.1016/s0378-3758(03)00198-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Brutti, Pierpaolo, Fulvio De Santis y Stefania Gubbiotti. "Bayesian-frequentist sample size determination: a game of two priors". METRON 72, n.º 2 (13 de mayo de 2014): 133–51. http://dx.doi.org/10.1007/s40300-014-0043-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Cao, Jing, J. Jack Lee y Susan Alber. "Comparison of Bayesian sample size criteria: ACC, ALC, and WOC". Journal of Statistical Planning and Inference 139, n.º 12 (diciembre de 2009): 4111–22. http://dx.doi.org/10.1016/j.jspi.2009.05.041.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Wang, Hansheng, Shein-Chung Chow y Murphy Chen. "A Bayesian Approach on Sample Size Calculation for Comparing Means". Journal of Biopharmaceutical Statistics 15, n.º 5 (1 de septiembre de 2005): 799–807. http://dx.doi.org/10.1081/bip-200067789.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Stamey, James y Richard Gerlach. "Bayesian sample size determination for case-control studies with misclassification". Computational Statistics & Data Analysis 51, n.º 6 (marzo de 2007): 2982–92. http://dx.doi.org/10.1016/j.csda.2006.01.014.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Whitehead, John, Elsa Valdés-Márquez, Patrick Johnson y Gordon Graham. "Bayesian sample size for exploratory clinical trials incorporating historical data". Statistics in Medicine 27, n.º 13 (2008): 2307–27. http://dx.doi.org/10.1002/sim.3140.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Hoofs, Huub, Rens van de Schoot, Nicole W. H. Jansen y IJmert Kant. "Evaluating Model Fit in Bayesian Confirmatory Factor Analysis With Large Samples: Simulation Study Introducing the BRMSEA". Educational and Psychological Measurement 78, n.º 4 (23 de mayo de 2017): 537–68. http://dx.doi.org/10.1177/0013164417709314.

Texto completo
Resumen
Bayesian confirmatory factor analysis (CFA) offers an alternative to frequentist CFA based on, for example, maximum likelihood estimation for the assessment of reliability and validity of educational and psychological measures. For increasing sample sizes, however, the applicability of current fit statistics evaluating model fit within Bayesian CFA is limited. We propose, therefore, a Bayesian variant of the root mean square error of approximation (RMSEA), the BRMSEA. A simulation study was performed with variations in model misspecification, factor loading magnitude, number of indicators, number of factors, and sample size. This showed that the 90% posterior probability interval of the BRMSEA is valid for evaluating model fit in large samples ( N≥ 1,000), using cutoff values for the lower (<.05) and upper limit (<.08) as guideline. An empirical illustration further shows the advantage of the BRMSEA in large sample Bayesian CFA models. In conclusion, it can be stated that the BRMSEA is well suited to evaluate model fit in large sample Bayesian CFA models by taking sample size and model complexity into account.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Xie, Xuan, Hui Feng y Bo Hu. "Bandwidth Detection of Graph Signals with a Small Sample Size". Sensors 21, n.º 1 (28 de diciembre de 2020): 146. http://dx.doi.org/10.3390/s21010146.

Texto completo
Resumen
Bandwidth is the crucial knowledge to sampling, reconstruction or estimation of the graph signal (GS). However, it is typically unknown in practice. In this paper, we focus on detecting the bandwidth of bandlimited GS with a small sample size, where the number of spectral components of GS to be tested may greatly exceed the sample size. To control the significance of the result, the detection procedure is implemented by multi-stage testing. In each stage, a Bayesian score test, which introduces a prior to the spectral components, is adopted to face the high dimensional challenge. By setting different priors in each stage, we make the test more powerful against alternatives that have similar bandwidth to the null hypothesis. We prove that the Bayesian score test is locally most powerful in expectation against the alternatives following the given prior. Finally, numerical analysis shows that our method has a good performance in bandwidth detection and is robust to the noise.
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Al-Labadi, Luai, Yifan Cheng, Forough Fazeli-Asl, Kyuson Lim y Yanqing Weng. "A Bayesian One-Sample Test for Proportion". Stats 5, n.º 4 (1 de diciembre de 2022): 1242–53. http://dx.doi.org/10.3390/stats5040075.

Texto completo
Resumen
This paper deals with a new Bayesian approach to the one-sample test for proportion. More specifically, let x=(x1,…,xn) be an independent random sample of size n from a Bernoulli distribution with an unknown parameter θ. For a fixed value θ0, the goal is to test the null hypothesis H0:θ=θ0 against all possible alternatives. The proposed approach is based on using the well-known formula of the Kullback–Leibler divergence between two binomial distributions chosen in a certain way. Then, the difference of the distance from a priori to a posteriori is compared through the relative belief ratio (a measure of evidence). Some theoretical properties of the method are developed. Examples and simulation results are included.
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Singh, Saroja Kumar, Sarat Kumar Acharya, Frederico R. B. Cruz y Roberto C. Quinino. "Bayesian sample size determination in a single-server deterministic queueing system". Mathematics and Computers in Simulation 187 (septiembre de 2021): 17–29. http://dx.doi.org/10.1016/j.matcom.2021.02.010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Martin, Jörg y Clemens Elster. "GUI for Bayesian sample size planning in type A uncertainty evaluation". Measurement Science and Technology 32, n.º 7 (30 de abril de 2021): 075005. http://dx.doi.org/10.1088/1361-6501/abe2bd.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Sakamaki, Kentaro, Michio Kanekiyo, Shoichi Ohwada, Kentaro Matsuura, Tomoyuki Kakizume, Fumihiro Takahashi, Akira Takazawa, Shunsuke Hagihara y Satoshi Morita. "Bayesian decision theory for clinical trials: Utility and sample size determination". Japanese Journal of Biometrics 41, n.º 1 (2020): 55–91. http://dx.doi.org/10.5691/jjb.41.55.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Beavers, Daniel P. y James D. Stamey. "Bayesian sample size determination for cost-effectiveness studies with censored data". PLOS ONE 13, n.º 1 (5 de enero de 2018): e0190422. http://dx.doi.org/10.1371/journal.pone.0190422.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Wang, Yuedong. "Sample size calculations for smoothing splines based on Bayesian confidence intervals". Statistics & Probability Letters 38, n.º 2 (junio de 1998): 161–66. http://dx.doi.org/10.1016/s0167-7152(97)00168-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía