Artículos de revistas sobre el tema "Bayesian non-Parametric model"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Bayesian non-Parametric model".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Assaf, A. George, Mike Tsionas, Florian Kock y Alexander Josiassen. "A Bayesian non-parametric stochastic frontier model". Annals of Tourism Research 87 (marzo de 2021): 103116. http://dx.doi.org/10.1016/j.annals.2020.103116.
Texto completoAssaf, A. George, Mike Tsionas, Florian Kock y Alexander Josiassen. "A Bayesian non-parametric stochastic frontier model". Annals of Tourism Research 87 (marzo de 2021): 103116. http://dx.doi.org/10.1016/j.annals.2020.103116.
Texto completoLI, R., J. ZHOU y L. WANG. "ESTIMATION OF THE BINARY LOGISTIC REGRESSION MODEL PARAMETER USING BOOTSTRAP RE-SAMPLING". Latin American Applied Research - An international journal 48, n.º 3 (31 de julio de 2018): 199–204. http://dx.doi.org/10.52292/j.laar.2018.228.
Texto completoAlamri, Faten S., Edward L. Boone y David J. Edwards. "A Bayesian Monotonic Non-parametric Dose-Response Model". Human and Ecological Risk Assessment: An International Journal 27, n.º 8 (12 de agosto de 2021): 2104–23. http://dx.doi.org/10.1080/10807039.2021.1956298.
Texto completoMinh Nguyen, Thanh y Q. M. Jonathan Wu. "A non-parametric Bayesian model for bounded data". Pattern Recognition 48, n.º 6 (junio de 2015): 2084–95. http://dx.doi.org/10.1016/j.patcog.2014.12.019.
Texto completoXia, Yunqing. "Application of non parametric Bayesian methods in high dimensional data". Journal of Computational Methods in Sciences and Engineering 24, n.º 2 (10 de mayo de 2024): 731–43. http://dx.doi.org/10.3233/jcm-237104.
Texto completoLi, Hong y Yang Lu. "A Bayesian non-parametric model for small population mortality". Scandinavian Actuarial Journal 2018, n.º 7 (2 de enero de 2018): 605–28. http://dx.doi.org/10.1080/03461238.2017.1418420.
Texto completoDong, Alice X. D., Jennifer S. K. Chan y Gareth W. Peters. "RISK MARGIN QUANTILE FUNCTION VIA PARAMETRIC AND NON-PARAMETRIC BAYESIAN APPROACHES". ASTIN Bulletin 45, n.º 3 (9 de julio de 2015): 503–50. http://dx.doi.org/10.1017/asb.2015.8.
Texto completoMILADINOVIC, BRANKO y CHRIS P. TSOKOS. "SENSITIVITY OF THE BAYESIAN RELIABILITY ESTIMATES FOR THE MODIFIED GUMBEL FAILURE MODEL". International Journal of Reliability, Quality and Safety Engineering 16, n.º 04 (agosto de 2009): 331–41. http://dx.doi.org/10.1142/s0218539309003423.
Texto completoHabeeb, Ahmed Abdulsamad y Qutaiba N. Nayef Al-Kazaz. "Bayesian and Classical Semi-parametric Estimation of the Balanced Longitudinal Data Model". International Academic Journal of Social Sciences 10, n.º 2 (2 de noviembre de 2023): 25–38. http://dx.doi.org/10.9756/iajss/v10i2/iajss1010.
Texto completoKim, Steven B., Scott M. Bartell y Daniel L. Gillen. "Inference for the existence of hormetic dose–response relationships in toxicology studies". Biostatistics 17, n.º 3 (12 de febrero de 2016): 523–36. http://dx.doi.org/10.1093/biostatistics/kxw004.
Texto completoTonner, Peter D., Cynthia L. Darnell, Francesca M. L. Bushell, Peter A. Lund, Amy K. Schmid y Scott C. Schmidler. "A Bayesian non-parametric mixed-effects model of microbial growth curves". PLOS Computational Biology 16, n.º 10 (26 de octubre de 2020): e1008366. http://dx.doi.org/10.1371/journal.pcbi.1008366.
Texto completoHong, Liang y Ryan Martin. "Real-time Bayesian non-parametric prediction of solvency risk". Annals of Actuarial Science 13, n.º 1 (7 de febrero de 2018): 67–79. http://dx.doi.org/10.1017/s1748499518000039.
Texto completoPeter, Mercy K., Levi Mbugua y Anthony Wanjoya. "Bayesian Non-Parametric Mixture Model with Application to Modeling Biological Markers". Journal of Data Analysis and Information Processing 07, n.º 04 (2019): 141–52. http://dx.doi.org/10.4236/jdaip.2019.74009.
Texto completoBathaee, Najmeh y Hamid Sheikhzadeh. "Non-parametric Bayesian inference for continuous density hidden Markov mixture model". Statistical Methodology 33 (diciembre de 2016): 256–75. http://dx.doi.org/10.1016/j.stamet.2016.10.003.
Texto completoKalinina, Irina A. y Aleksandr P. Gozhyj. "Modeling and forecasting of nonlinear nonstationary processes based on the Bayesian structural time series". Applied Aspects of Information Technology 5, n.º 3 (25 de octubre de 2022): 240–55. http://dx.doi.org/10.15276/aait.05.2022.17.
Texto completoTanwani, Ajay Kumar y Sylvain Calinon. "Small-variance asymptotics for non-parametric online robot learning". International Journal of Robotics Research 38, n.º 1 (11 de diciembre de 2018): 3–22. http://dx.doi.org/10.1177/0278364918816374.
Texto completoDu, Xin, Yulong Pei, Wouter Duivesteijn y Mykola Pechenizkiy. "Exceptional spatio-temporal behavior mining through Bayesian non-parametric modeling". Data Mining and Knowledge Discovery 34, n.º 5 (29 de enero de 2020): 1267–90. http://dx.doi.org/10.1007/s10618-020-00674-z.
Texto completoTrubey, Peter y Bruno Sansó. "Bayesian Non-Parametric Inference for Multivariate Peaks-over-Threshold Models". Entropy 26, n.º 4 (14 de abril de 2024): 335. http://dx.doi.org/10.3390/e26040335.
Texto completoSATO, KENGO, MICHIAKI HAMADA, TOUTAI MITUYAMA, KIYOSHI ASAI y YASUBUMI SAKAKIBARA. "A NON-PARAMETRIC BAYESIAN APPROACH FOR PREDICTING RNA SECONDARY STRUCTURES". Journal of Bioinformatics and Computational Biology 08, n.º 04 (agosto de 2010): 727–42. http://dx.doi.org/10.1142/s0219720010004926.
Texto completoNieto-Barajas, Luis E. y Fernando A. Quintana. "A Bayesian Non-Parametric Dynamic AR Model for Multiple Time Series Analysis". Journal of Time Series Analysis 37, n.º 5 (8 de febrero de 2016): 675–89. http://dx.doi.org/10.1111/jtsa.12182.
Texto completoAlbughdadi, M., L. Chaari, J. Y. Tourneret, F. Forbes y P. Ciuciu. "A Bayesian non-parametric hidden Markov random model for hemodynamic brain parcellation". Signal Processing 135 (junio de 2017): 132–46. http://dx.doi.org/10.1016/j.sigpro.2017.01.005.
Texto completoWu, Lili, Pei Shan Fam, Majid Khan Majahar Ali, Ying Tian, Mohd Tahir Ismail y Siti Zulaikha Mohd Jamaludin. "Comparative Analysis of Improved Dirichlet Process Mixture Model". Malaysian Journal of Fundamental and Applied Sciences 19, n.º 6 (4 de diciembre de 2023): 1099–118. http://dx.doi.org/10.11113/mjfas.v19n6.3062.
Texto completoHou, Ying, Hai Huang, Kai Wang y Yu Hang Zhu. "Video Call Traffic Identification Based on Bayesian Model". Advanced Materials Research 765-767 (septiembre de 2013): 1307–11. http://dx.doi.org/10.4028/www.scientific.net/amr.765-767.1307.
Texto completoZhang, Rui, Christian Walder y Marian-Andrei Rizoiu. "Variational Inference for Sparse Gaussian Process Modulated Hawkes Process". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 04 (3 de abril de 2020): 6803–10. http://dx.doi.org/10.1609/aaai.v34i04.6160.
Texto completoLapshin, Victor. "A nonparametric Bayesian approach to term structure fitting". Studies in Economics and Finance 36, n.º 4 (7 de octubre de 2019): 600–615. http://dx.doi.org/10.1108/sef-01-2018-0025.
Texto completoKamigaito, Hidetaka, Taro Watanabe, Hiroya Takamura, Manabu Okumura y Eiichiro Sumita. "Hierarchical Back-off Modeling of Hiero Grammar based on Non-parametric Bayesian Model". Journal of Information Processing 25 (2017): 912–23. http://dx.doi.org/10.2197/ipsjjip.25.912.
Texto completoJohnson, Timothy D., Zhuqing Liu, Andreas J. Bartsch y Thomas E. Nichols. "A Bayesian non-parametric Potts model with application to pre-surgical FMRI data". Statistical Methods in Medical Research 22, n.º 4 (23 de mayo de 2012): 364–81. http://dx.doi.org/10.1177/0962280212448970.
Texto completoZhuang, Peixian, Yue Huang, Delu Zeng y Xinghao Ding. "Mixed noise removal based on a novel non-parametric Bayesian sparse outlier model". Neurocomputing 174 (enero de 2016): 858–65. http://dx.doi.org/10.1016/j.neucom.2015.09.095.
Texto completoChae, Minwoo, Lizhen Lin y David B. Dunson. "Bayesian sparse linear regression with unknown symmetric error". Information and Inference: A Journal of the IMA 8, n.º 3 (9 de enero de 2019): 621–53. http://dx.doi.org/10.1093/imaiai/iay022.
Texto completoM. Rasekhi, M. Saber, Haitham M. Yousof y Emadeldin I. A. Ali. "Estimation of the Multicomponent Stress-Strength Reliability Model Under the Topp-Leone Distribution: Applications, Bayesian and Non-Bayesian Assessement". Statistics, Optimization & Information Computing 12, n.º 1 (13 de noviembre de 2023): 133–52. http://dx.doi.org/10.19139/soic-2310-5070-1685.
Texto completoDing, Xing Hao y Xian Bo Chen. "Image Sparse Representation Based on a Nonparametric Bayesian Model". Applied Mechanics and Materials 103 (septiembre de 2011): 109–14. http://dx.doi.org/10.4028/www.scientific.net/amm.103.109.
Texto completoOu, Mingdong, Nan Li, Cheng Yang, Shenghuo Zhu y Rong Jin. "Semi-Parametric Sampling for Stochastic Bandits with Many Arms". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 de julio de 2019): 7933–40. http://dx.doi.org/10.1609/aaai.v33i01.33017933.
Texto completoHärkänen, Tommi, Anna But y Jari Haukka. "Non-parametric Bayesian Intensity Model: Exploring Time-to-Event Data on Two Time Scales". Scandinavian Journal of Statistics 44, n.º 3 (23 de junio de 2017): 798–814. http://dx.doi.org/10.1111/sjos.12280.
Texto completoAlmeida, Marco Pollo, Rafael S. Paixão, Pedro L. Ramos, Vera Tomazella, Francisco Louzada y Ricardo S. Ehlers. "Bayesian non-parametric frailty model for dependent competing risks in a repairable systems framework". Reliability Engineering & System Safety 204 (diciembre de 2020): 107145. http://dx.doi.org/10.1016/j.ress.2020.107145.
Texto completoKoutsourelakis, P. S. "A multi-resolution, non-parametric, Bayesian framework for identification of spatially-varying model parameters". Journal of Computational Physics 228, n.º 17 (septiembre de 2009): 6184–211. http://dx.doi.org/10.1016/j.jcp.2009.05.016.
Texto completoMontano Herrera, Liliana, Tobias Eilert, I.-Ting Ho, Milena Matysik, Michael Laussegger, Ralph Guderlei, Bernhard Schrantz, Alexander Jung, Erich Bluhmki y Jens Smiatek. "Holistic Process Models: A Bayesian Predictive Ensemble Method for Single and Coupled Unit Operation Models". Processes 10, n.º 4 (29 de marzo de 2022): 662. http://dx.doi.org/10.3390/pr10040662.
Texto completoChen, Xian Bo, Xing Hao Ding y Hui Liu. "MRI Denoising Based on a Non-Parametric Bayesian Image Sparse Representation Method". Advanced Materials Research 219-220 (marzo de 2011): 1354–58. http://dx.doi.org/10.4028/www.scientific.net/amr.219-220.1354.
Texto completoYANG, YE, CHRIS-CAROLIN SCHÖN y DANIEL SORENSEN. "The genetics of environmental variation of dry matter grain yield in maize". Genetics Research 94, n.º 3 (28 de mayo de 2012): 113–19. http://dx.doi.org/10.1017/s0016672312000304.
Texto completoNiazi, Muhammad Hassan Khan, Oswaldo Morales Nápoles y Bregje K. van Wesenbeeck. "Probabilistic Characterization of the Vegetated Hydrodynamic System Using Non-Parametric Bayesian Networks". Water 13, n.º 4 (4 de febrero de 2021): 398. http://dx.doi.org/10.3390/w13040398.
Texto completoStahl, Dale O. "A Bayesian Method for Characterizing Population Heterogeneity". Games 10, n.º 4 (9 de octubre de 2019): 40. http://dx.doi.org/10.3390/g10040040.
Texto completoKaplan, Adam, Eric F. Lock y Mark Fiecas. "Bayesian GWAS with Structured and Non-Local Priors". Bioinformatics 36, n.º 1 (22 de junio de 2019): 17–25. http://dx.doi.org/10.1093/bioinformatics/btz518.
Texto completoZhu, Jun, Jianfei Chen, Wenbo Hu y Bo Zhang. "Big Learning with Bayesian methods". National Science Review 4, n.º 4 (4 de mayo de 2017): 627–51. http://dx.doi.org/10.1093/nsr/nwx044.
Texto completoMoore, C. J., A. J. K. Chua, C. P. L. Berry y J. R. Gair. "Fast methods for training Gaussian processes on large datasets". Royal Society Open Science 3, n.º 5 (mayo de 2016): 160125. http://dx.doi.org/10.1098/rsos.160125.
Texto completoZainudin, Zulkarnain y Sarath Kodagoda. "Gaussian Processes-BayesFilters with Non-Parametric Data Optimization for Efficient 2D LiDAR Based People Tracking". International Journal of Robotics and Control Systems 3, n.º 2 (19 de marzo de 2023): 206–20. http://dx.doi.org/10.31763/ijrcs.v3i2.901.
Texto completoAkanni, Wasiu A., Mark Wilkinson, Christopher J. Creevey, Peter G. Foster y Davide Pisani. "Implementing and testing Bayesian and maximum-likelihood supertree methods in phylogenetics". Royal Society Open Science 2, n.º 8 (agosto de 2015): 140436. http://dx.doi.org/10.1098/rsos.140436.
Texto completoKoech, Ben Kiprono. "Estimation of Receiver Operating Characteristic Surface Using Mixtures of Finite Polya Trees (MFPT)". International Journal of Statistics and Probability 10, n.º 2 (25 de enero de 2021): 18. http://dx.doi.org/10.5539/ijsp.v10n2p18.
Texto completoVirbickaitė, Audronė, M. Concepción Ausín y Pedro Galeano. "A Bayesian non-parametric approach to asymmetric dynamic conditional correlation model with application to portfolio selection". Computational Statistics & Data Analysis 100 (agosto de 2016): 814–29. http://dx.doi.org/10.1016/j.csda.2014.12.005.
Texto completoZhao, Bonan, Christopher G. Lucas y Neil R. Bramley. "How Do People Generalize Causal Relations over Objects? A Non-parametric Bayesian Account". Computational Brain & Behavior 5, n.º 1 (30 de noviembre de 2021): 22–44. http://dx.doi.org/10.1007/s42113-021-00124-z.
Texto completoZhai, Feifei, Jiajun Zhang, Yu Zhou y Chengqing Zong. "Unsupervised Tree Induction for Tree-based Translation". Transactions of the Association for Computational Linguistics 1 (diciembre de 2013): 243–54. http://dx.doi.org/10.1162/tacl_a_00224.
Texto completo