Literatura académica sobre el tema "Bayesian non-Parametric model"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Bayesian non-Parametric model".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Bayesian non-Parametric model"
Assaf, A. George, Mike Tsionas, Florian Kock y Alexander Josiassen. "A Bayesian non-parametric stochastic frontier model". Annals of Tourism Research 87 (marzo de 2021): 103116. http://dx.doi.org/10.1016/j.annals.2020.103116.
Texto completoAssaf, A. George, Mike Tsionas, Florian Kock y Alexander Josiassen. "A Bayesian non-parametric stochastic frontier model". Annals of Tourism Research 87 (marzo de 2021): 103116. http://dx.doi.org/10.1016/j.annals.2020.103116.
Texto completoLI, R., J. ZHOU y L. WANG. "ESTIMATION OF THE BINARY LOGISTIC REGRESSION MODEL PARAMETER USING BOOTSTRAP RE-SAMPLING". Latin American Applied Research - An international journal 48, n.º 3 (31 de julio de 2018): 199–204. http://dx.doi.org/10.52292/j.laar.2018.228.
Texto completoAlamri, Faten S., Edward L. Boone y David J. Edwards. "A Bayesian Monotonic Non-parametric Dose-Response Model". Human and Ecological Risk Assessment: An International Journal 27, n.º 8 (12 de agosto de 2021): 2104–23. http://dx.doi.org/10.1080/10807039.2021.1956298.
Texto completoMinh Nguyen, Thanh y Q. M. Jonathan Wu. "A non-parametric Bayesian model for bounded data". Pattern Recognition 48, n.º 6 (junio de 2015): 2084–95. http://dx.doi.org/10.1016/j.patcog.2014.12.019.
Texto completoXia, Yunqing. "Application of non parametric Bayesian methods in high dimensional data". Journal of Computational Methods in Sciences and Engineering 24, n.º 2 (10 de mayo de 2024): 731–43. http://dx.doi.org/10.3233/jcm-237104.
Texto completoLi, Hong y Yang Lu. "A Bayesian non-parametric model for small population mortality". Scandinavian Actuarial Journal 2018, n.º 7 (2 de enero de 2018): 605–28. http://dx.doi.org/10.1080/03461238.2017.1418420.
Texto completoDong, Alice X. D., Jennifer S. K. Chan y Gareth W. Peters. "RISK MARGIN QUANTILE FUNCTION VIA PARAMETRIC AND NON-PARAMETRIC BAYESIAN APPROACHES". ASTIN Bulletin 45, n.º 3 (9 de julio de 2015): 503–50. http://dx.doi.org/10.1017/asb.2015.8.
Texto completoMILADINOVIC, BRANKO y CHRIS P. TSOKOS. "SENSITIVITY OF THE BAYESIAN RELIABILITY ESTIMATES FOR THE MODIFIED GUMBEL FAILURE MODEL". International Journal of Reliability, Quality and Safety Engineering 16, n.º 04 (agosto de 2009): 331–41. http://dx.doi.org/10.1142/s0218539309003423.
Texto completoHabeeb, Ahmed Abdulsamad y Qutaiba N. Nayef Al-Kazaz. "Bayesian and Classical Semi-parametric Estimation of the Balanced Longitudinal Data Model". International Academic Journal of Social Sciences 10, n.º 2 (2 de noviembre de 2023): 25–38. http://dx.doi.org/10.9756/iajss/v10i2/iajss1010.
Texto completoTesis sobre el tema "Bayesian non-Parametric model"
Bartcus, Marius. "Bayesian non-parametric parsimonious mixtures for model-based clustering". Thesis, Toulon, 2015. http://www.theses.fr/2015TOUL0010/document.
Texto completoThis thesis focuses on statistical learning and multi-dimensional data analysis. It particularly focuses on unsupervised learning of generative models for model-based clustering. We study the Gaussians mixture models, in the context of maximum likelihood estimation via the EM algorithm, as well as in the Bayesian estimation context by maximum a posteriori via Markov Chain Monte Carlo (MCMC) sampling techniques. We mainly consider the parsimonious mixture models which are based on a spectral decomposition of the covariance matrix and provide a flexible framework particularly for the analysis of high-dimensional data. Then, we investigate non-parametric Bayesian mixtures which are based on general flexible processes such as the Dirichlet process and the Chinese Restaurant Process. This non-parametric model formulation is relevant for both learning the model, as well for dealing with the issue of model selection. We propose new Bayesian non-parametric parsimonious mixtures and derive a MCMC sampling technique where the mixture model and the number of mixture components are simultaneously learned from the data. The selection of the model structure is performed by using Bayes Factors. These models, by their non-parametric and sparse formulation, are useful for the analysis of large data sets when the number of classes is undetermined and increases with the data, and when the dimension is high. The models are validated on simulated data and standard real data sets. Then, they are applied to a real difficult problem of automatic structuring of complex bioacoustic data issued from whale song signals. Finally, we open Markovian perspectives via hierarchical Dirichlet processes hidden Markov models
Ren, Yan. "A Non-parametric Bayesian Method for Hierarchical Clustering of Longitudinal Data". University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1337085531.
Texto completoGebremeskel, Haftu Gebrehiwot. "Implementing hierarchical bayesian model to fertility data: the case of Ethiopia". Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3424458.
Texto completoBackground: L’Etiopia è una nazione divisa in 9 regioni amministrative (definite su base etnica) e due città. Si tratta di una nazione citata spesso come esempio di alta fecondità e rapida crescita demografica. Nonostante gli sforzi del governo, fecondità e cresita della popolazione rimangono elevati, specialmente a livello regionale. Pertanto, lo studio della fecondità in Etiopia e nelle sue regioni – caraterizzate da un’alta variabilità – è di vitale importanza. Un modo semplice di rilevare le diverse caratteristiche della distribuzione della feconditàè quello di costruire in modello adatto, specificando diverse funzioni matematiche. In questo senso, vale la pena concentrarsi sui tassi specifici di fecondità, i quali mostrano una precisa forma comune a tutte le popolazioni. Tuttavia, molti paesi mostrano una “simmetrizzazione” che molti modelli non riescono a cogliere adeguatamente. Pertanto, per cogliere questa la forma dei tassi specifici, sono stati utilizzati alcuni modelli parametrici ma l’uso di tali modelliè ancora molto limitato in Africa ed in Etiopia in particolare. Obiettivo: In questo lavoro si utilizza un nuovo modello per modellare la fecondità in Etiopia con quattro obiettivi specifici: (1). esaminare la forma dei tassi specifici per età dell’Etiopia a livello nazionale e regionale; (2). proporre un modello che colga al meglio le varie forme dei tassi specifici sia a livello nazionale che regionale. La performance del modello proposto verrà confrontata con quella di altri modelli esistenti; (3). adattare la funzione di fecondità proposta attraverso un modello gerarchico Bayesiano e mostrare che tale modelloè sufficientemente flessibile per stimare la fecondità delle singole regioni – dove le stime possono essere imprecise a causa di una bassa numerosità campionaria; (4). confrontare le stime ottenute con quelle fornite da metodi non gerarchici (massima verosimiglianza o Bayesiana semplice) Metodologia: In questo studio, proponiamo un modello a 4 parametri, la Normale Asimmetrica, per modellare i tassi specifici di fecondità. Si mostra che questo modello è sufficientemente flessibile per cogliere adeguatamente le forme dei tassi specifici a livello sia nazionale che regionale. Per valutare la performance del modello, si è condotta un’analisi preliminare confrontandolo con altri dieci modelli parametrici e non parametrici usati nella letteratura demografica: la funzione splie quadratica, la Cubic-Spline, i modelli di Coale e Trussel, Beta, Gamma, Hadwiger, polinomiale, Gompertz, Peristera-Kostaki e l’Adjustment Error Model. I modelli sono stati stimati usando i minimi quadrati non lineari (nls) e il Criterio d’Informazione di Akaike viene usato per determinarne la performance. Tuttavia, la stima per le singole regioni pu‘o risultare difficile in situazioni dove abbiamo un’alta variabilità della numerosità campionaria. Si propone, quindi di usare procedure gerarchiche che permettono di ottenere stime più affidabili rispetto ai modelli non gerarchici (“pooling” completo o “unpooling”) per l’analisi a livello regionale. In questo studia si formula un modello Bayesiano gerarchico ottenendo la distribuzione a posteriori dei parametri per i tassi di fecnodità specifici a livello regionale e relativa stima dell’incertezza. Altri metodi non gerarchici (Bayesiano semplice e massima verosimiglianza) vengono anch’essi usati per confronto. Gli algoritmi Gibbs Sampling e Metropolis-Hastings vengono usati per campionare dalla distribuzione a posteriori di ogni parametro. Anche il metodo del “Data Augmentation” viene utilizzato per ottenere le stime. La robustezza dei risultati viene controllata attraverso un’analisi di sensibilità e l’opportuna diagnostica della convergenza degli algoritmi viene riportata nel testo. In tutti i casi, si sono usate distribuzioni a priori non-informative. Risultati: I risutlati ottenuti dall’analisi preliminare mostrano che il modello Skew Normal ha il pi`u basso AIC nelle regioni Addis Ababa, Dire Dawa, Harari, Affar, Gambela, Benshangul-Gumuz e anche per le stime nazionali. Nelle altre regioni (Tigray, Oromiya, Amhara, Somali e SNNP) il modello Skew Normal non risulta il milgiore, ma comunque mostra un buon adattamento ai dati. Dunque, il modello Skew Normal risulta il migliore in 6 regioni su 11 e sui tassi specifici di tutto il paese. Conclusioni: Dunque, il modello Skew Normal risulta globalmente il migliore. Da questo risultato iniziale, siè partiti per costruire i modelli Gerachico Bayesiano, Bayesiano semplice e di massima verosimiglianza. Il risultato del confronto tra questi tre approcci è che il modello gerarchico fornisce stime più preciso rispetto agli altri.
Bratières, Sébastien. "Non-parametric Bayesian models for structured output prediction". Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/274973.
Texto completoZhang, Jufen. "Bayesian density estimation and classification of incomplete data using semi-parametric and non parametric models". Thesis, University of Exeter, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.426082.
Texto completoXu, Yangyi. "Frequentist-Bayesian Hybrid Tests in Semi-parametric and Non-parametric Models with Low/High-Dimensional Covariate". Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/71285.
Texto completoPh. D.
Knowles, David Arthur. "Bayesian non-parametric models and inference for sparse and hierarchical latent structure". Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610403.
Texto completoHadrich, Ben Arab Atizez. "Étude des fonctions B-splines pour la fusion d'images segmentées par approche bayésienne". Thesis, Littoral, 2015. http://www.theses.fr/2015DUNK0385/document.
Texto completoIn this thesis we are treated the problem of nonparametric estimation probability distributions. At first, we assumed that the unknown density f was approximated by a basic mixture quadratic B-spline. Then, we proposed a new estimate of the unknown density function f based on quadratic B-splines, with two methods estimation. The first is based on the maximum likelihood method and the second is based on the Bayesian MAP estimation method. Then we have generalized our estimation study as part of the mixture and we have proposed a new estimator mixture of unknown distributions based on the adapted estimation of two methods. In a second time, we treated the problem of semi supervised statistical segmentation of images based on the hidden Markov model and the B-sline functions. We have shown the contribution of hybridization of the hidden Markov model and B-spline functions in unsupervised Bayesian statistical image segmentation. Thirdly, we presented a fusion approach based on the maximum likelihood method, through the nonparametric estimation of probabilities, for each pixel of the image. We then applied this approach to multi-spectral and multi-temporal images segmented by our nonparametric and unsupervised algorithm
Yang, Sikun [Verfasser], Heinz Akademischer Betreuer] Köppl y Kristian [Akademischer Betreuer] [Kersting. "Non-parametric Bayesian Latent Factor Models for Network Reconstruction / Sikun Yang ; Heinz Köppl, Kristian Kersting". Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2020. http://nbn-resolving.de/urn:nbn:de:tuda-tuprints-96957.
Texto completoYang, Sikun [Verfasser], Heinz [Akademischer Betreuer] Köppl y Kristian [Akademischer Betreuer] Kersting. "Non-parametric Bayesian Latent Factor Models for Network Reconstruction / Sikun Yang ; Heinz Köppl, Kristian Kersting". Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2020. http://d-nb.info/1204200769/34.
Texto completoLibros sobre el tema "Bayesian non-Parametric model"
Florens, J. P., M. Mouchart, J. P. Raoult, L. Simar y A. F. M. Smith. Specifying Statistical Models: From Parametric to Non-Parametric, Using Bayesian or Non-Bayesian Approaches. Springer London, Limited, 2012.
Buscar texto completoBrazier, John, Julie Ratcliffe, Joshua A. Salomon y Aki Tsuchiya. Modelling health state valuation data. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198725923.003.0005.
Texto completoCapítulos de libros sobre el tema "Bayesian non-Parametric model"
Khoufache, Reda, Anisse Belhadj, Hanene Azzag y Mustapha Lebbah. "Distributed MCMC Inference for Bayesian Non-parametric Latent Block Model". En Advances in Knowledge Discovery and Data Mining, 271–83. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-2242-6_22.
Texto completoBatmanghelich, Nematollah Kayhan, Ardavan Saeedi, Raul San Jose Estepar, Michael Cho y William M. Wells. "Inferring Disease Status by Non-parametric Probabilistic Embedding". En Medical Computer Vision and Bayesian and Graphical Models for Biomedical Imaging, 49–57. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61188-4_5.
Texto completoAlhaji, Baba B., Hongsheng Dai, Yoshiko Hayashi, Veronica Vinciotti, Andrew Harrison y Berthold Lausen. "Analysis of ChIP-seq Data Via Bayesian Finite Mixture Models with a Non-parametric Component". En Analysis of Large and Complex Data, 507–17. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25226-1_43.
Texto completoAlmeida, Carlos y Michel Mouchart. "Bayesian Encompassing Specification Test Under Not Completely Known Partial Observability*". En Bayesian Statistics 8, 575–80. Oxford University PressOxford, 2007. http://dx.doi.org/10.1093/oso/9780199214655.003.0021.
Texto completoWalker, S. G. y J. C. Wakefield. "Bayesian Approaches to the Population Modelling of a Monotonic Dose-Response Relation". En Bayesian Statistics 5, 783–90. Oxford University PressOxford, 1996. http://dx.doi.org/10.1093/oso/9780198523567.003.0059.
Texto completo"Mobile Robot Localization with Recursive Bayesian Filters". En Simultaneous Localization and Mapping for Mobile Robots, 203–52. IGI Global, 2013. http://dx.doi.org/10.4018/978-1-4666-2104-6.ch007.
Texto completoBandyopadhyay, Arindam. "Statistical Tools for Model Validation and Back Testing". En Basic Statistics for Risk Management in Banks and Financial Institutions, 233–54. Oxford University Press, 2022. http://dx.doi.org/10.1093/oso/9780192849014.003.0009.
Texto completo"5. Random Coefficient Models". En Bayesian Non- and Semi-parametric Methods and Applications, 152–86. Princeton University Press, 2014. http://dx.doi.org/10.1515/9781400850303-006.
Texto completoHeikkinen, Juha. "Trans-dimensional Bayesian non-parametrics with spatial point processes". En Highly Structured Stochastic Systems, 203–6. Oxford University PressOxford, 2003. http://dx.doi.org/10.1093/oso/9780198510550.003.0019.
Texto completoHjort, N. L. "Bayesian Approaches to Non- and Semiparametric Density Estimation". En Bayesian Statistics 5, 223–54. Oxford University PressOxford, 1996. http://dx.doi.org/10.1093/oso/9780198523567.003.0013.
Texto completoActas de conferencias sobre el tema "Bayesian non-Parametric model"
Matteoli, Stefania, Marco Diani y Giovanni Corsini. "Bayesian Non-Parametric Detector Based on the Replacement Model". En IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2022. http://dx.doi.org/10.1109/igarss46834.2022.9883554.
Texto completoZhuang, Peixian, Wei Wang, Delu Zeng y Xinghao Ding. "Robust mixed noise removal with non-parametric Bayesian sparse outlier model". En 2014 IEEE 16th International Workshop on Multimedia Signal Processing (MMSP). IEEE, 2014. http://dx.doi.org/10.1109/mmsp.2014.6958792.
Texto completoEnsafi, Shahab, Shijian Lu, Ashraf A. Kassim y Chew Lim Tan. "Sparse non-parametric Bayesian model for HEP-2 cell image classification". En 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI 2015). IEEE, 2015. http://dx.doi.org/10.1109/isbi.2015.7163964.
Texto completoFujimoto, Masakiyo, Yotaro Kubo y Tomohiro Nakatani. "Unsupervised non-parametric Bayesian modeling of non-stationary noise for model-based noise suppression". En ICASSP 2014 - 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2014. http://dx.doi.org/10.1109/icassp.2014.6854667.
Texto completoOtoshi, Tatsuya, Shin'ichi Arakawa, Masayuki Murata y Takeo Hosomi. "Non-parametric Decision-Making by Bayesian Attractor Model for Dynamic Slice Selection". En GLOBECOM 2021 - 2021 IEEE Global Communications Conference. IEEE, 2021. http://dx.doi.org/10.1109/globecom46510.2021.9685972.
Texto completoAliamiri, A., J. Stalnaker y E. Miller. "A Bayesian Approach for Classification of Buried Objects using Non-Parametric Prior Model". En 2006 IEEE International Symposium on Geoscience and Remote Sensing. IEEE, 2006. http://dx.doi.org/10.1109/igarss.2006.1003.
Texto completo"NON-PARAMETRIC BAYESIAN ALIGNMENT AND RECOVERY OF OCCLUDED FACE USING DIRECT COMBINED MODEL". En International Conference on Computer Vision Theory and Applications. SciTePress - Science and and Technology Publications, 2010. http://dx.doi.org/10.5220/0002833704950498.
Texto completoZhou, Deyu, Xuan Zhang y Yulan He. "Event extraction from Twitter using Non-Parametric Bayesian Mixture Model with Word Embeddings". En Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers. Stroudsburg, PA, USA: Association for Computational Linguistics, 2017. http://dx.doi.org/10.18653/v1/e17-1076.
Texto completoKamigaito, Hidetaka, Taro Watanabe, Hiroya Takamura, Manabu Okumura y Eiichiro Sumita. "Hierarchical Back-off Modeling of Hiero Grammar based on Non-parametric Bayesian Model". En Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2015. http://dx.doi.org/10.18653/v1/d15-1143.
Texto completoGiremus, Audrey y Vincent Pereira. "A Bayesian non parametric time-switching autoregressive model for multipath errors in GPS navigation". En 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM). IEEE, 2016. http://dx.doi.org/10.1109/sam.2016.7569698.
Texto completoInformes sobre el tema "Bayesian non-Parametric model"
Petrova, Katerina. On the Validity of Classical and Bayesian DSGE-Based Inference. Federal Reserve Bank of New York, enero de 2024. http://dx.doi.org/10.59576/sr.1084.
Texto completo