Literatura académica sobre el tema "Bayesian Inference Damage Detection"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Bayesian Inference Damage Detection".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Bayesian Inference Damage Detection"
Jiang, Xiaomo y Sankaran Mahadevan. "Bayesian Probabilistic Inference for Nonparametric Damage Detection of Structures". Journal of Engineering Mechanics 134, n.º 10 (octubre de 2008): 820–31. http://dx.doi.org/10.1061/(asce)0733-9399(2008)134:10(820).
Texto completoAlkam, Feras y Tom Lahmer. "Eigenfrequency-Based Bayesian Approach for Damage Identification in Catenary Poles". Infrastructures 6, n.º 4 (13 de abril de 2021): 57. http://dx.doi.org/10.3390/infrastructures6040057.
Texto completoSmith, Reuel, Mohammad Modarres y Enrique López Droguett. "A recursive Bayesian approach to small fatigue crack propagation and detection modeling". Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 232, n.º 6 (15 de marzo de 2018): 738–53. http://dx.doi.org/10.1177/1748006x18758721.
Texto completoPrajapat, Kanta y Samit Ray-Chaudhuri. "Detection of multiple damages employing best achievable eigenvectors under Bayesian inference". Journal of Sound and Vibration 422 (mayo de 2018): 237–63. http://dx.doi.org/10.1016/j.jsv.2018.02.012.
Texto completoHou, Yunyun, Ruiyu He, Jie Dong, Yangrui Yang y Wei Ma. "IoT Anomaly Detection Based on Autoencoder and Bayesian Gaussian Mixture Model". Electronics 11, n.º 20 (12 de octubre de 2022): 3287. http://dx.doi.org/10.3390/electronics11203287.
Texto completoKernicky, Timothy, Matthew Whelan y Ehab Al-Shaer. "Vibration-based damage detection with uncertainty quantification by structural identification using nonlinear constraint satisfaction with interval arithmetic". Structural Health Monitoring 18, n.º 5-6 (25 de octubre de 2018): 1569–89. http://dx.doi.org/10.1177/1475921718806476.
Texto completoMandal, Manisha y Shyamapada Mandal. "Detection of transmission change points during unlock-3 and unlock-4 measures controlling COVID-19 in India". Journal of Drug Delivery and Therapeutics 11, n.º 2 (15 de marzo de 2021): 76–86. http://dx.doi.org/10.22270/jddt.v11i2.4600.
Texto completoSahu, Abhijeet y Katherine Davis. "Inter-Domain Fusion for Enhanced Intrusion Detection in Power Systems: An Evidence Theoretic and Meta-Heuristic Approach". Sensors 22, n.º 6 (9 de marzo de 2022): 2100. http://dx.doi.org/10.3390/s22062100.
Texto completoHospedales, Timothy y Sethu Vijayakumar. "Multisensory Oddity Detection as Bayesian Inference". PLoS ONE 4, n.º 1 (15 de enero de 2009): e4205. http://dx.doi.org/10.1371/journal.pone.0004205.
Texto completoJiang, Xiaomo, Yong Yuan y Xian Liu. "Bayesian inference method for stochastic damage accumulation modeling". Reliability Engineering & System Safety 111 (marzo de 2013): 126–38. http://dx.doi.org/10.1016/j.ress.2012.11.006.
Texto completoTesis sobre el tema "Bayesian Inference Damage Detection"
Goi, Yoshinao. "Bayesian Damage Detection for Vibration Based Bridge Health Monitoring". Kyoto University, 2018. http://hdl.handle.net/2433/232013.
Texto completoLebre, Sophie. "Stochastic process analysis for Genomics and Dynamic Bayesian Networks inference". Phd thesis, Université d'Evry-Val d'Essonne, 2007. http://tel.archives-ouvertes.fr/tel-00260250.
Texto completoFirst we study a parsimonious Markov model called Mixture Transition Distribution (MTD) model which is a mixture of Markovian transitions. The overly high number of constraints on the parameters of this model hampers the formulation of an analytical expression of the Maximum Likelihood Estimate (MLE). We propose to approach the MLE thanks to an EM algorithm. After comparing the performance of this algorithm to results from the litterature, we use it to evaluate the relevance of MTD modeling for bacteria DNA coding sequences in comparison with standard Markovian modeling.
Then we propose two different approaches for genetic regulation network recovering. We model those genetic networks with Dynamic Bayesian Networks (DBNs) whose edges describe the dependency relationships between time-delayed genes expression. The aim is to estimate the topology of this graph despite the overly low number of repeated measurements compared with the number of observed genes.
To face this problem of dimension, we first assume that the dependency relationships are homogeneous, that is the graph topology is constant across time. Then we propose to approximate this graph by considering partial order dependencies. The concept of partial order dependence graphs, already introduced for static and non directed graphs, is adapted and characterized for DBNs using the theory of graphical models. From these results, we develop a deterministic procedure for DBNs inference.
Finally, we relax the homogeneity assumption by considering the succession of several homogeneous phases. We consider a multiple changepoint
regression model. Each changepoint indicates a change in the regression model parameters, which corresponds to the way an expression level depends on the others. Using reversible jump MCMC methods, we develop a stochastic algorithm which allows to simultaneously infer the changepoints location and the structure of the network within the phases delimited by the changepoints.
Validation of those two approaches is carried out on both simulated and real data analysis.
Ko, Kyungduk. "Bayesian wavelet approaches for parameter estimation and change point detection in long memory processes". Diss., Texas A&M University, 2004. http://hdl.handle.net/1969.1/2804.
Texto completoReichl, Johannes y Sylvia Frühwirth-Schnatter. "A Censored Random Coefficients Model for the Detection of Zero Willingness to Pay". Springer, 2011. http://epub.wu.ac.at/3707/1/WU_epub_(2).pdf.
Texto completoZhang, Hanze. "Bayesian inference on quantile regression-based mixed-effects joint models for longitudinal-survival data from AIDS studies". Scholar Commons, 2017. https://scholarcommons.usf.edu/etd/7456.
Texto completoOsborne, Michael A. "Bayesian Gaussian processes for sequential prediction, optimisation and quadrature". Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:1418c926-6636-4d96-8bf6-5d94240f3d1f.
Texto completoSuvorov, Anton. "Molecular Evolution of Odonata Opsins, Odonata Phylogenomics and Detection of False Positive Sequence Homology Using Machine Learning". BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/7320.
Texto completoZhang, Fan. "Statistical Methods for Characterizing Genomic Heterogeneity in Mixed Samples". Digital WPI, 2016. https://digitalcommons.wpi.edu/etd-dissertations/419.
Texto completoAsgrimsson, David Steinar. "Quantifying uncertainty in structural condition with Bayesian deep learning : A study on the Z-24 bridge benchmark". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-251451.
Texto completoEn maskininlärningsmetod för strukturell skadedetektering av broar presenteras. Metoden valideras på det kända referensdataset Z-24, där en sensor-instrumenterad trespannsbro stegvist skadats. Ett Bayesianskt neuralt nätverk med autoenkoders tränas till att rekonstruera råa sensordatasekvenser, med osäkerhetsgränser i förutsägningen. Rekonstrueringsavvikelsen jämförs med avvikelsesfördelningen i oskadat tillstånd och sekvensen bedöms att komma från ett skadad eller icke skadat tillstånd. Flera realistiska stegvisa skadetillstånd upptäcktes, vilket gör metoden användbar i ett databaserat skadedetektionssystem för en bro i full storlek. Detta är ett lovande steg mot ett helt operativt databaserat skadedetektionssystem.
Kennedy, Justin M. "Wave-induced marine craft motion estimation and control". Thesis, Queensland University of Technology, 2021. https://eprints.qut.edu.au/213481/1/Justin_Kennedy_Thesis.pdf.
Texto completoCapítulos de libros sobre el tema "Bayesian Inference Damage Detection"
Mohammadi-Ghazi, Reza y Oral Buyukozturk. "Bayesian Inference for Damage Detection in Unsupervised Structural Health Monitoring". En Model Validation and Uncertainty Quantification, Volume 3, 283–89. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15224-0_30.
Texto completoPepi, Chiara y Massimiliano Gioffré. "Vibration Based Bayesian Inference for Finite Element Model Parameters Estimation and Damage Detection". En Lecture Notes in Mechanical Engineering, 1591–607. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41057-5_129.
Texto completoChowdhury, Ananda S. y Suchendra M. Bhandarkar. "Fracture Detection Using Bayesian Inference". En Computer Vision-Guided Virtual Craniofacial Surgery, 91–109. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-296-4_6.
Texto completoHanson, Timothy, Sudipto Banerjee, Pei Li y Alexander McBean. "Spatial Boundary Detection for Areal Counts". En Nonparametric Bayesian Inference in Biostatistics, 377–99. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19518-6_19.
Texto completoBassetti, Federico, Fabrizio Leisen, Edoardo Airoldi y Michele Guindani. "Species Sampling Priors for Modeling Dependence: An Application to the Detection of Chromosomal Aberrations". En Nonparametric Bayesian Inference in Biostatistics, 97–114. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19518-6_5.
Texto completoEftekhar Azam, Saeed. "Recursive Bayesian Estimation of Partially Observed Dynamic Systems". En Online Damage Detection in Structural Systems, 7–55. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02559-9_2.
Texto completoYang, Yuan, Zhongmin Cai, Weixuan Mao y Zhihai Yang. "Identifying Intrusion Infections via Probabilistic Inference on Bayesian Network". En Detection of Intrusions and Malware, and Vulnerability Assessment, 307–26. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20550-2_16.
Texto completoHegenderfer, Joshua, Sez Atamturktur y Austin Gillen. "Damage Detection in Steel Structures Using Bayesian Calibration Techniques". En Topics in Modal Analysis II, Volume 6, 179–93. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-2419-2_16.
Texto completoÁsgrímsson, Davíð Steinar, Ignacio González, Giampiero Salvi y Raid Karoumi. "Bayesian Deep Learning for Vibration-Based Bridge Damage Detection". En Structural Integrity, 27–43. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81716-9_2.
Texto completoDzunic, Zoran, Justin G. Chen, Hossein Mobahi, Oral Buyukozturk y John W. Fisher. "A Bayesian State-Space Approach for Damage Detection and Classification". En Conference Proceedings of the Society for Experimental Mechanics Series, 171–83. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15248-6_18.
Texto completoActas de conferencias sobre el tema "Bayesian Inference Damage Detection"
Zhou, K., Q. Shuai y J. Tang. "Adaptive Damage Detection Using Tunable Piezoelectric Admittance Sensor and Intelligent Inference". En ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/smasis2014-7624.
Texto completoBellam Muralidhar, Nanda Kishore y Dirk Lorenz. "A Model-Based Damage Identification using Guided Ultrasonic Wave Propagation in Fiber Metal Laminates". En VI ECCOMAS Young Investigators Conference. València: Editorial Universitat Politècnica de València, 2021. http://dx.doi.org/10.4995/yic2021.2021.12684.
Texto completoShuai, Q., K. Zhou y J. Tang. "Structural damage identification using piezoelectric impedance and Bayesian inference". En SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, editado por Jerome P. Lynch. SPIE, 2015. http://dx.doi.org/10.1117/12.2084442.
Texto completoNajar, Fatma, Nuha Zamzami y Nizar Bouguila. "Fake News Detection Using Bayesian Inference". En 2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI). IEEE, 2019. http://dx.doi.org/10.1109/iri.2019.00066.
Texto completoLiu, Chen, Xuemei Bai, Gounou Charles Sobabe, Chenjie Zhang, Zhijun Wang y Bin Guo. "Spectrum detection based on Bayesian inference". En 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). IEEE, 2017. http://dx.doi.org/10.1109/cisp-bmei.2017.8302115.
Texto completoHooi, Bryan, Neil Shah, Alex Beutel, Stephan Günnemann, Leman Akoglu, Mohit Kumar, Disha Makhija y Christos Faloutsos. "BIRDNEST: Bayesian Inference for Ratings-Fraud Detection". En Proceedings of the 2016 SIAM International Conference on Data Mining. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2016. http://dx.doi.org/10.1137/1.9781611974348.56.
Texto completoCanillas, Remi, Omar Hasan, Laurent Sarrat y Lionel Brunie. "Supplier Impersonation Fraud Detection using Bayesian Inference". En 2020 IEEE International Conference on Big Data and Smart Computing (BigComp). IEEE, 2020. http://dx.doi.org/10.1109/bigcomp48618.2020.00-53.
Texto completoShuai, Q., G. Liang y J. Tang. "Piezoelectric admittance-based damage identification by Bayesian inference with pre-screening". En SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, editado por Gyuhae Park. SPIE, 2016. http://dx.doi.org/10.1117/12.2219159.
Texto completoJin, Yuanwei. "Cognitive multi-antenna radar detection using Bayesian inference". En 2012 IEEE 7th Sensor Array and Multichannel Signal Processing Workshop (SAM). IEEE, 2012. http://dx.doi.org/10.1109/sam.2012.6250524.
Texto completoGao, Hong-Yun y Kin-Man Lam. "Salient object detection using octonion with Bayesian inference". En 2014 IEEE International Conference on Image Processing (ICIP). IEEE, 2014. http://dx.doi.org/10.1109/icip.2014.7025666.
Texto completo