Literatura académica sobre el tema "Bayes predictor"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Bayes predictor".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Bayes predictor"
Liang, Guohua, Xingquan Zhu y Chengqi Zhang. "An Empirical Study of Bagging Predictors for Different Learning Algorithms". Proceedings of the AAAI Conference on Artificial Intelligence 25, n.º 1 (4 de agosto de 2011): 1802–3. http://dx.doi.org/10.1609/aaai.v25i1.8026.
Texto completoZhang, Shenghan, Yufeng Gu, Yinshan Gao, Xinxing Wang, Daoyong Zhang y Liming Zhou. "Petrophysical Regression regarding Porosity, Permeability, and Water Saturation Driven by Logging-Based Ensemble and Transfer Learnings: A Case Study of Sandy-Mud Reservoirs". Geofluids 2022 (5 de octubre de 2022): 1–31. http://dx.doi.org/10.1155/2022/9443955.
Texto completoIrmayani, Irmayani y Budyanita Asrun. "Klasifikasi Sosial Ekonomi Menggunakan Naïve Bayes Classifier". Dewantara Journal of Technology 2, n.º 2 (17 de noviembre de 2021): 70–74. http://dx.doi.org/10.59563/djtech.v2i2.138.
Texto completoLiu, Laura, Hyungsik Roger Moon y Frank Schorfheide. "Forecasting With Dynamic Panel Data Models". Econometrica 88, n.º 1 (2020): 171–201. http://dx.doi.org/10.3982/ecta14952.
Texto completoRobertson, David E. y Q. J. Wang. "A Bayesian Approach to Predictor Selection for Seasonal Streamflow Forecasting". Journal of Hydrometeorology 13, n.º 1 (1 de febrero de 2012): 155–71. http://dx.doi.org/10.1175/jhm-d-10-05009.1.
Texto completoWu, Yaning, Song Huang, Haijin Ji, Changyou Zheng y Chengzu Bai. "A novel Bayes defect predictor based on information diffusion function". Knowledge-Based Systems 144 (marzo de 2018): 1–8. http://dx.doi.org/10.1016/j.knosys.2017.12.015.
Texto completoHashem, Atef F. y Alaa H. Abdel-Hamid. "Statistical Prediction Based on Ordered Ranked Set Sampling Using Type-II Censored Data from the Rayleigh Distribution under Progressive-Stress Accelerated Life Tests". Journal of Mathematics 2023 (30 de marzo de 2023): 1–19. http://dx.doi.org/10.1155/2023/5211682.
Texto completoAlvarez, R. Michael, Delia Bailey y Jonathan N. Katz. "An Empirical Bayes Approach to Estimating Ordinal Treatment Effects". Political Analysis 19, n.º 1 (2011): 20–31. http://dx.doi.org/10.1093/pan/mpq033.
Texto completoArumi, Endah Ratna, Sumarno Adi Subrata y Anisa Rahmawati. "Implementation of Naïve bayes Method for Predictor Prevalence Level for Malnutrition Toddlers in Magelang City". Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) 7, n.º 2 (3 de marzo de 2023): 201–7. http://dx.doi.org/10.29207/resti.v7i2.4438.
Texto completoBurghardt, Thomas P. y Katalin Ajtai. "Neural/Bayes network predictor for inheritable cardiac disease pathogenicity and phenotype". Journal of Molecular and Cellular Cardiology 119 (junio de 2018): 19–27. http://dx.doi.org/10.1016/j.yjmcc.2018.04.006.
Texto completoTesis sobre el tema "Bayes predictor"
Zerbeto, Ana Paula. "Melhor preditor empírico aplicado aos modelos beta mistos". Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/45/45133/tde-09042014-132109/.
Texto completoThe mixed beta regression models are extensively used to analyse data with hierarquical structure and that take values in a restricted and known interval. In order to propose a prediction method for their random components, the results previously obtained in the literature for the empirical Bayes predictor were extended to beta regression models with random intercept normally distributed. The proposed predictor, called empirical best predictor (EBP), can be applied in two situations: when the interest is predict individuals effects for new elements of groups that were already analysed by the fitted model and, also, for elements of new groups. Simulation studies were designed and their results indicated that the performance of EBP was efficient and satisfatory in most of scenarios. Using the propose to analyse two health databases, the same results of simulations were observed in both two cases of application, and good performances were observed. So, the proposed method is promissing for the use in predictions for mixed beta regression models.
Ayme, Alexis. "Supervised learning with missing data : a non-asymptotic point of view". Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS252.
Texto completoMissing values are common in most real-world data sets due to the combination of multiple sources andinherently missing information, such as sensor failures or unanswered survey questions. The presenceof missing values often prevents the application of standard learning algorithms. This thesis examinesmissing values in a prediction context, aiming to achieve accurate predictions despite the occurrence ofmissing data in both training and test datasets. The focus of this thesis is to theoretically analyze specific algorithms to obtain finite-sample guarantees. We derive minimax lower bounds on the excess risk of linear predictions in presence of missing values.Such lower bounds depend on the distribution of the missing pattern, and can grow exponentially withthe dimension. We propose a very simple method consisting in applying Least-Square procedure onthe most frequent missing patterns only. Such a simple method turns out to be near minimax-optimalprocedure, which departs from the Least-Square algorithm applied to all missing patterns. Followingthis, we explore the impute-then-regress method, where imputation is performed using the naive zeroimputation, and the regression step is carried out via linear models, whose parameters are learned viastochastic gradient descent. We demonstrate that this very simple method offers strong finite-sampleguarantees in high-dimensional settings. Specifically, we show that the bias of this method is lowerthan the bias of ridge regression. As ridge regression is often used in high dimensions, this proves thatthe bias of missing data (via zero imputation) is negligible in some high-dimensional settings. Thesefindings are illustrated using random features models, which help us to precisely understand the role ofdimensionality. Finally, we study different algorithm to handle linear classification in presence of missingdata (logistic regression, perceptron, LDA). We prove that LDA is the only model that can be valid forboth complete and missing data for some generic settings
Laws, David Joseph. "A Bayes decision theoretic approach to the optimal design of screens". Thesis, University of Newcastle Upon Tyne, 1997. http://hdl.handle.net/10443/648.
Texto completoWong, Hubert. "Small sample improvement over Bayes prediction under model uncertainty". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ56646.pdf.
Texto completoDahlgren, Lindström Adam. "Structured Prediction using Voted Conditional Random FieldsLink Prediction in Knowledge Bases". Thesis, Umeå universitet, Institutionen för datavetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-140692.
Texto completoLiu, Benmei. "Hierarchical Bayes estimation and empirical best prediction of small-area proportions". College Park, Md.: University of Maryland, 2009. http://hdl.handle.net/1903/9149.
Texto completoThesis research directed by: Joint Program in Survey Methodology. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Bakal, Mehmet. "Relation Prediction over Biomedical Knowledge Bases for Drug Repositioning". UKnowledge, 2019. https://uknowledge.uky.edu/cs_etds/90.
Texto completoKhan, Imran Qayyum. "Simultaneous prediction of symptom severity and cause in data from a test battery for Parkinson patients, using machine learning methods". Thesis, Högskolan Dalarna, Datateknik, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:du-4586.
Texto completoWang, Kai. "Novel computational methods for accurate quantitative and qualitative protein function prediction /". Thesis, Connect to this title online; UW restricted, 2005. http://hdl.handle.net/1773/11488.
Texto completoFredette, Marc. "Prediction of recurrent events". Thesis, University of Waterloo, 2004. http://hdl.handle.net/10012/1142.
Texto completoLibros sobre el tema "Bayes predictor"
S, Jacobson Nathan, Ritzert Frank J y NASA Glenn Research Center, eds. Computational thermodynamic study to predict complex phase equilibria in the nickel-base superalloy René N6. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Buscar texto completoKenkyūjo, Bōsai Kagaku Gijutsu. Jishindō yosoku chizu no kōgaku riyō: Jishin hazādo no kyōtsū jōhō kiban o mezashite : Jishindō Yosoku Chizu Kōgaku Riyō Kentō Iinkai hōkokusho = Engineering application of the national seismic hazard program : seismic hazard information sharing bases. Tsukuba-shi: Bōsai Kagaku Gijutsu Kenkyūjo, 2004.
Buscar texto completoA, Boxwell D., Spencer R. H, Ames Research Center y United States. Army Aviation Research and Technology Activity., eds. Review and analysis of the DNW/model 360 rotor acoustic data base. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1989.
Buscar texto completoEbeling, Charles E. The determination of operational and support requirements and costs during the conceptual design of space systems: Final report : under grant no. NAG-1-1327. Dayton, Ohio: University of Dayton, Engineering Management and Systems Dept., 1992.
Buscar texto completoUnited States. National Aeronautics and Space Administration., ed. The determination of operational and support requirements and costs during the conceptual design of space systems: Interim report. Dayton, Ohio: University of Dayton, Engineering Management and Systems Dept., 1991.
Buscar texto completoD, Perrin D. pKa Prediction for Organic Acids and Bases. Springer, 2012.
Buscar texto completoPerrin, D. PKa Prediction for Organic Acids and Bases. Springer London, Limited, 2013.
Buscar texto completoLargescale Inference Empirical Bayes Methods For Estimation Testing And Prediction. Cambridge University Press, 2013.
Buscar texto completoGlymour, Clark. Mind's Arrows: Bayes Nets and Graphical Causal Models in Psychology. MIT Press, 2001.
Buscar texto completoEfron, Bradley. Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction. Cambridge University Press, 2013.
Buscar texto completoCapítulos de libros sobre el tema "Bayes predictor"
Montesinos López, Osval Antonio, Abelardo Montesinos López y Jose Crossa. "Bayesian Genomic Linear Regression". En Multivariate Statistical Machine Learning Methods for Genomic Prediction, 171–208. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-89010-0_6.
Texto completoJohnson, Alicia A., Miles Q. Ott y Mine Dogucu. "(Normal) Hierarchical Models with Predictors". En Bayes Rules!, 421–62. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9780429288340-17.
Texto completoJohnson, Alicia A., Miles Q. Ott y Mine Dogucu. "(Normal) Hierarchical Models without Predictors". En Bayes Rules!, 387–420. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9780429288340-16.
Texto completoJohnson, Alicia A., Miles Q. Ott y Mine Dogucu. "Posterior Inference & Prediction". En Bayes Rules!, 183–208. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9780429288340-8.
Texto completoBolfarine, Heleno y Shelemyahu Zacks. "Bayes and Minimax Predictors". En Prediction Theory for Finite Populations, 66–98. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2904-9_4.
Texto completoTandel, Swapnali y Pragya Vaishnav. "Disease Prediction Using Bayes' Theorem". En Software Engineering Approaches to Enable Digital Transformation Technologies, 74–81. New York: Routledge, 2023. http://dx.doi.org/10.1201/9781003441601-6.
Texto completoMukhopadhyay, Parimal. "Bayes and Empirical Bayes Prediction of a Finite Population Total". En Lecture Notes in Statistics, 43–92. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4612-2088-6_3.
Texto completoSteele, Brian, John Chandler y Swarna Reddy. "The Multinomial Naïve Bayes Prediction Function". En Algorithms for Data Science, 313–42. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45797-0_10.
Texto completoHenry, Bill, Avshalom Caspi, Terrie Moffitt y Phil Silva. "Temperamental and Familial Predictors of Criminal Conviction". En Biosocial Bases of Violence, 305–7. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-4648-8_19.
Texto completoBerger, James O. y Luis R. Pericchi. "On The Justification of Default and Intrinsic Bayes Factors". En Modelling and Prediction Honoring Seymour Geisser, 276–93. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4612-2414-3_17.
Texto completoActas de conferencias sobre el tema "Bayes predictor"
Xu, Zhipeng, Yabing Yao y Ning Ma. "Mutual information higher-order link prediction based on Naive Bayes". En 2024 6th International Conference on Internet of Things, Automation and Artificial Intelligence (IoTAAI), 117–20. IEEE, 2024. http://dx.doi.org/10.1109/iotaai62601.2024.10692526.
Texto completoNieto-Chaupis, Huber. "The Geometrical Bayes Theorem and Probabilistic Prediction of Next Global Pandemic". En 2024 International Conference on Electrical, Computer and Energy Technologies (ICECET), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/icecet61485.2024.10698141.
Texto completoMohamed Elhadi Hussen, Ali Abdulsamea y Ahmad Saikhu. "Modeling Of Student Graduation Prediction Using the Naive Bayes Classifier Algorithm". En 2024 3rd International Conference on Creative Communication and Innovative Technology (ICCIT), 1–8. IEEE, 2024. http://dx.doi.org/10.1109/iccit62134.2024.10701117.
Texto completoAntony, Ashin, Devi A y Kuruvilla Varghese. "High Throughput Hardware for Hoeffding Tree Algorithm with Adaptive Naive Bayes Predictor". En 2021 6th International Conference for Convergence in Technology (I2CT). IEEE, 2021. http://dx.doi.org/10.1109/i2ct51068.2021.9418100.
Texto completoShkurti, Lamir y Faton Kabashi. "Albanian News Category Predictor System using a Multinomial Naïve Bayes and Logistic Regression Algorithms". En 2021 5th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). IEEE, 2021. http://dx.doi.org/10.1109/ismsit52890.2021.9604602.
Texto completoSomwanshi, Harshada y Pramod Ganjewar. "Real-Time Dengue Prediction Using Naive Bayes Predicator in the IoT". En 2018 International Conference on Inventive Research in Computing Applications (ICIRCA). IEEE, 2018. http://dx.doi.org/10.1109/icirca.2018.8596796.
Texto completoK, Sibhi, Thanvir Ibrahim S, Akil Malik y Praveen Joe I. R. "Career Prediction Using Naive Bayes". En 2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT). IEEE, 2022. http://dx.doi.org/10.1109/icicict54557.2022.9917745.
Texto completoWang, Tao y Wei-hua Li. "Naive Bayes Software Defect Prediction Model". En 2010 International Conference on Computational Intelligence and Software Engineering (CiSE). IEEE, 2010. http://dx.doi.org/10.1109/cise.2010.5677057.
Texto completoBiteau, J. "Pressure, Seals and Traps: the Bases for the Petroleum System to Work Efficiently". En Second EAGE Workshop on Pore Pressure Prediction. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201900497.
Texto completoMeiriza, Allsela, Endang Lestari, Pacu Putra, Ayu Monaputri y Dini Ayu Lestari. "Prediction Graduate Student Use Naive Bayes Classifier". En Sriwijaya International Conference on Information Technology and Its Applications (SICONIAN 2019). Paris, France: Atlantis Press, 2020. http://dx.doi.org/10.2991/aisr.k.200424.056.
Texto completoInformes sobre el tema "Bayes predictor"
Knox, Thomas, James Stock y Mark Watson. Empirical Bayes Forecasts of One Time Series Using Many Predictors. Cambridge, MA: National Bureau of Economic Research, marzo de 2001. http://dx.doi.org/10.3386/t0269.
Texto completoCheng, Hao, Rohan L. Fernando y Dorian J. Garrick. Three Different Gibbs Samplers for BayesB Genomic Prediction. Ames (Iowa): Iowa State University, enero de 2014. http://dx.doi.org/10.31274/ans_air-180814-1152.
Texto completoCeylan, Ismail Ilkan, Stefan Borgwardt y Thomas Lukasiewicz. Most Probable Explanations for Probabilistic Database Queries. Technische Universität Dresden, 2017. http://dx.doi.org/10.25368/2023.220.
Texto completoGirolamo Neto, Cesare, Rodolfo Jaffe, Rosane Cavalcante y Samia Nunes. Comparacao de modelos para predicao do desmatamento na Amazonia brasileira. ITV, 2021. http://dx.doi.org/10.29223/prod.tec.itv.ds.2021.25.girolamoneto.
Texto completoSoloviev, V. y V. Solovieva. Quantum econophysics of cryptocurrencies crises. [б. в.], 2018. http://dx.doi.org/10.31812/0564/2464.
Texto completoThe current bases for roof fall prediction at WIPP and a preliminary prediction for SPDV Room 2. Office of Scientific and Technical Information (OSTI), octubre de 1993. http://dx.doi.org/10.2172/10191310.
Texto completoROTATIONAL STIFFNESS MODEL FOR SHALLOW EMBEDDED STEEL COLUMN BASES. The Hong Kong Institute of Steel Construction, agosto de 2022. http://dx.doi.org/10.18057/icass2020.p.308.
Texto completo