Índice
Literatura académica sobre el tema "Bassin de l’Amazone"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Bassin de l’Amazone".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Bassin de l’Amazone"
Guyot, Jean Loup, Valdemar Guimarães, Eurides De Oliveira, Michel Molinier y Jacques Callède. "La variabilité hydrologique actuelle dans le bassin de l’Amazone". Bulletin de l’Institut français d’études andines 27, n.º 3 (1998): 779–88. http://dx.doi.org/10.3406/bifea.1998.1331.
Texto completoVialou, Agueda Vilhena y Denis Vialou. "Archéologie: du passe au présent, dês paysages au territoire". Revista Nordestina de História do Brasil 2, n.º 4 (28 de junio de 2020): 13–44. http://dx.doi.org/10.17648/2596-0334-v2i4-1918.
Texto completoCallède, Jacques, Josyane Ronchail, Jean-Loup Guyot y Eurides De Oliveira. "Déboisement amazonien : son influence sur le débit de l’Amazone à Óbidos (Brésil)". Revue des sciences de l'eau 21, n.º 1 (29 de abril de 2008): 59–72. http://dx.doi.org/10.7202/017931ar.
Texto completoCallède, Jacques, Daniel Medeiros Moreira y Stéphane Calmant. "Détermination de l'altitude du Zéro des stations hydrométriques en Amazonie brésilienne. Application aux lignes d'eau des Rios Negro, Solimões et Amazone". Revue des sciences de l’eau 26, n.º 2 (3 de junio de 2013): 153–71. http://dx.doi.org/10.7202/1016065ar.
Texto completoGetirana, Augusto C. V., Emanuel Dutra, Matthieu Guimberteau, Jonghun Kam, Hong-Yi Li, Bertrand Decharme, Zhengqiu Zhang et al. "Water Balance in the Amazon Basin from a Land Surface Model Ensemble". Journal of Hydrometeorology 15, n.º 6 (1 de diciembre de 2014): 2586–614. http://dx.doi.org/10.1175/jhm-d-14-0068.1.
Texto completoPoccard Chapuis, René, Christian Corniaux y Doubangolo Coulibaly. "Dynamiques de structuration des bassins laitiers : comparaison entre l’Amazonie brésilienne et le Mali". Revue d’élevage et de médecine vétérinaire des pays tropicaux 60, n.º 1-4 (1 de enero de 2007): 141. http://dx.doi.org/10.19182/remvt.9966.
Texto completoFotio, Julien Brice, Henri Ngoa Tabi, Cyrille Bergaly Kamdem y Yannick Djoumessi. "Croissance démographique et développement durable : Cas des pays du Bassin du Congo". Revue Africaine d’Environnement et d’Agriculture 6, n.º 3 (21 de octubre de 2023): 1–10. http://dx.doi.org/10.4314/rafea.v6i3.1.
Texto completoBlanco, Claudio J. C., Yves Secretan y Anne-Catherine Favre. "Transférabilité d’un modèle pluie–débit pour la simulation de courbes de débits classés sur des petits bassins non jaugés de l’Amazonie". Canadian Journal of Civil Engineering 35, n.º 9 (septiembre de 2008): 999–1008. http://dx.doi.org/10.1139/l08-057.
Texto completoMcLelland, James M., Bruce W. Selleck y Marion E. Bickford. "Tectonic Evolution of the Adirondack Mountains and Grenville Orogen Inliers within the USA". Geoscience Canada 40, n.º 4 (20 de diciembre de 2013): 318. http://dx.doi.org/10.12789/geocanj.2013.40.022.
Texto completoCallède, Jacques, Gérard Cochonneau, Fabrício Vieira Alves, Jean-Loup Guyot, Valdemar Santos Guimarães y Eurides De Oliveira. "Les apports en eau de l'Amazone à l'Océan Atlantique". 23, n.º 3 (25 de octubre de 2010): 247–73. http://dx.doi.org/10.7202/044688ar.
Texto completoTesis sobre el tema "Bassin de l’Amazone"
Hidalgo, Sánchez Liz Stefanny. "Rôle d'un karst andin tropical (Alto Mayo, Pérou) sur la dynamique de production de matériel dissous vers l'Amazone : analyse du fonctionnement hydrogéologique et des flux associés". Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS326.
Texto completoIn the Andean area of the Amazon Basin, karst areas play a major role in the geochemistry of the Amazon River and in the CO2 consumption associated with weathering processes despite the small surface they cover (<1% of the basin of the Amazon basin). Amazon). Peru concentrates nearly 90% of these Andean karst areas, which stretch from the peaks of the Cordillera (at more than 5000 m altitude) to the Amazon piedmont (400 m) in a wide variety of tropical ecosystems. Although these areas represent a major source of dissolved materials exported by the Amazon, they have never been studied for characterizing the hydrogeologic functioning of these karstic systems and estimate their contributions in term of dissolved fluxes. To identify the control factors of the dynamics of production and transfer of dissolved matter from the carbonated domain to the Amazon, the hydrogeological functioning of aquifers of the karst massif of Alto Mayo, located on the eastern slope of the Andes Northern Peru, has been analyzed. The three main karst springs of the massif were equipped with CTD (Conductivity, Temperature and Depth) and periodic gauging was carried out to evaluate their flow. A bi-monthly sampling was carried out for the analysis of geochemical parameters (major and trace elements, Total Organic Carbon and stable isotopes of water). The temporal variability of flow rates and concentrations was calculated by the ratio of the standard deviation to the monthly mean percentage. The main spring of this massif (Río Negro, average flow = 22 m3s-1) is currently the most important karstic spring of South America. This major spring presents a low discharge variability during the hydrology cycle (the temporal variability of the discharge is 17%) and a weak impulse response to the precipitations, which indicate a strong damping signal by the karstic system. Low hydrological reactivity to rainfall is also observed at the Río Aguas Claras spring (temporal variability of flows of 59%). The Río Tío Yacu spring has a higher impulse response and a higher hydrological variability (temporal variability of flow rates of 67%). The hydrogeochemical signature of the groundwaters from all springs is highly dominated by the carbonate rocks weathering (Ca2+ et HCO3-). Daily total dissolved solid (TDS) was estimated by the relationship between electrical conductivity and TDS of the peruvian karstic springs studied in this work, and those of the French network of SNO Karst. This daily TDS has a relatively low variability during the hydrologic cycle (12%, 7% and 9% for Rio Negro, Aguas Claras and Tio Yacu springs, respectively) compared to that of the discharge. These results indicate that the dynamics of production of dissolved material, in the karstic spring of the Alto Mayo, is mainly controlled by the variability of flows despite the heterogeneity of the hydrodynamic behaviors. This “chemostatic’’ behavior has been observed in many contexts at the global scale and can be attributed to the fast kinetics of carbonate weathering. However, Rio Negro spring shows a weak variability of TDS fluxes, as a result of low discharge variability. This is conditioned by his hydrogeological behavior (more inertial), which involves weak hydrodynamic and hydrochemical responses after rainfall events. As a result, our results characterize the sensitivity of carbonate rocks weathering to hydroclimatic variability in tropical Andean environments. The weathering of Andean karstic areas represents 50% of the total of the dissolved fluxes exported by the Marañón River, the principal affluent of the Amazon river
Souza, Juliana Maria Gonçalves de. "Modeling of overpresure evolution during the gravitational collapse of the Amazon deep-sea fan, Foz do Amazonas Basin". Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS050.
Texto completoThe Amazon River culminates in one of the world’s largest deep-sea fans, a shelf-slope wedge that has prograded seaward since the late Miocene while undergoing gravitational collapse above shale detachments. In order to examine the overpressure mechanisms acting in the Amazon Fan and affecting its gravity tectonics, I developed an innovative approach based on the integration of modeling methods commonly used in the oil &gas industry, applied here for the first time to a collapsing passive margin depocenter. Two regional seismic sections were interpreted, depth-converted, structurally restored and then used for basin and geomechanical modelling to investigate overpressure mechanisms and deformation along the detachments and associated extensional and compressional faultsduring the deposition of up to 6-10 km of sediment over the last 8 Ma. The modeling results provide information on the evolution of pore pressure and temperature and their implications for the operation of the southeast and northwest structural compartments of the gravity tectonic system. It is found that themain control on gravity tectonics was sediment supply, which differed in magnitude and style between the SE and NW compartments. In both compartments, progradation of the Amazon Fan drove the basinward migration of the deformation front in response to a seaward migration of overpressure along the detachment. In the SE compartment, fault activity was observed only during periods of higher sedimentation, whereas in the NW compartment, continuous fault activity reflected constant high sediment input over the last 8Ma. Disequilibrium compaction (undercompaction) is argued to be the primary mechanism of overpressure in the Amazon Fan, however the secondary role of inflationary overpressures cannot be excluded. The temperature-dependent smectite-illite transition window was present within the fan, mainly above the detachment in the SE compartment, but at the level of the detachment on the inner and outer part of the NW compartment. Thermogenic gas generation (by primary and secondary cracking) did not affect the gravity system in the SE compartment, where most gas was expelled prior to the growth of the fan and thereafter trapped in shale-rich layers beneath the detachment, whereas in the NW compartment it has contributed to higher pore pressure on the detachment and some faults. Thus, temperature-driven fluid mechanics played a different role in terms of inflationary overpressure in the two structural compartments. These differences are in part due to differing different crustal types beneath the two compartments, which syn- to post-rift basin modeling shows produceddistinct thermalhistories,modulated by thermal blanketing during the growth of the Amazon fan. In particular, this led to lower heat flow in the NW compartment over the last 8 Ma, accounting for the greater depth of the smectite-illite transition window relative to the detachment and the later expulsion of thermogenic gases. The findings of this thesis thus provide new insights into the evolution of pore pressure during the growth and collapse of the Amazon Fan, and distinguish particularities of each structural compartment linked to its long-term history. The results also show that the integration of basin modeling methodologies provides an extremely useful tool to investigate the tectonic and sedimentary dynamics of Late Cenozoic depocentres,even when there is limited data. As a perspective of future work, dedicated studies of the crustal and thermal history of the Amazon margin might be done