Literatura académica sobre el tema "Basal stacking faults"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Basal stacking faults".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Basal stacking faults"
Byrapa, Sha Yan, Fang Zhen Wu, Huan Huan Wang, Balaji Raghothamachar, Gloria Choi, Shun Sun, Michael Dudley et al. "Deflection of Threading Dislocations with Burgers Vector c/c+a Observed in 4H-SiC PVT–Grown Substrates with Associated Stacking Faults". Materials Science Forum 717-720 (mayo de 2012): 347–50. http://dx.doi.org/10.4028/www.scientific.net/msf.717-720.347.
Texto completoTaniguchi, Chisato, Aiko Ichimura, Noboru Ohtani, Masakazu Katsuno, Tatsuo Fujimoto, Shinya Sato, Hiroshi Tsuge y Takayuki Yano. "Temperature Dependent Stability of Stacking Fault in Highly Nitrogen-Doped 4H-SiC Crystals". Materials Science Forum 858 (mayo de 2016): 109–12. http://dx.doi.org/10.4028/www.scientific.net/msf.858.109.
Texto completoJezierska, Elżbieta y Jolanta Borysiuk. "HRTEM and LACBED of Zigzag Boundaries in GaN Epilayers". Solid State Phenomena 203-204 (junio de 2013): 24–27. http://dx.doi.org/10.4028/www.scientific.net/ssp.203-204.24.
Texto completoChen, S. J. "Imaging dislocation shear band in sapphire". Proceedings, annual meeting, Electron Microscopy Society of America 50, n.º 1 (agosto de 1992): 340–41. http://dx.doi.org/10.1017/s0424820100122101.
Texto completoKatsuno, Masakazu, Masashi Nakabayashi, Tatsuo Fujimoto, Noboru Ohtani, Hirokatsu Yashiro, Hiroshi Tsuge, Takashi Aigo, Taizo Hoshino y Kohei Tatsumi. "Stacking Fault Formation in Highly Nitrogen-Doped 4H-SiC Substrates with Different Surface Preparation Conditions". Materials Science Forum 600-603 (septiembre de 2008): 341–44. http://dx.doi.org/10.4028/www.scientific.net/msf.600-603.341.
Texto completoBauer, Sondes, Sergey Lazarev, Martin Bauer, Tobias Meisch, Marian Caliebe, Václav Holý, Ferdinand Scholz y Tilo Baumbach. "Three-dimensional reciprocal space mapping with a two-dimensional detector as a low-latency tool for investigating the influence of growth parameters on defects in semipolar GaN". Journal of Applied Crystallography 48, n.º 4 (16 de junio de 2015): 1000–1010. http://dx.doi.org/10.1107/s1600576715009085.
Texto completoLazarev, Sergey, Sondes Bauer, Tobias Meisch, Martin Bauer, Ingo Tischer, Mykhailo Barchuk, Klaus Thonke, Vaclav Holy, Ferdinand Scholz y Tilo Baumbach. "Three-dimensional reciprocal space mapping of diffuse scattering for the study of stacking faults in semipolar (\bf 11{\overline 2}2) GaN layers grown from the sidewall of anr-patterned sapphire substrate". Journal of Applied Crystallography 46, n.º 5 (11 de septiembre de 2013): 1425–33. http://dx.doi.org/10.1107/s0021889813020438.
Texto completoHu, Shanshan, Zeyu Chen, Qianyu Cheng, Balaji Raghothamachar y Michael Dudley. "Stacking Fault Analysis for the Early-Stages of PVT Growth of 4H-SiC Crystals". ECS Meeting Abstracts MA2024-02, n.º 36 (22 de noviembre de 2024): 2518. https://doi.org/10.1149/ma2024-02362518mtgabs.
Texto completoAgarwal, Anant K., Sumi Krishnaswami, Jim Richmond, Craig Capell, Sei Hyung Ryu, John W. Palmour, Bruce Geil, Dimos Katsis, Charles Scozzie y Robert E. Stahlbush. "Influence of Basal Plane Dislocation Induced Stacking Faults on the Current Gain in SiC BJTs". Materials Science Forum 527-529 (octubre de 2006): 1409–12. http://dx.doi.org/10.4028/www.scientific.net/msf.527-529.1409.
Texto completoAnzalone, Ruggero, Nicolò Piluso, Andrea Severino, Simona Lorenti, Giuseppe Arena y Salvo Coffa. "Dislocations Propagation Study Trough High-Resolution 4H-SiC Substrate Mapping". Materials Science Forum 963 (julio de 2019): 276–79. http://dx.doi.org/10.4028/www.scientific.net/msf.963.276.
Texto completoTesis sobre el tema "Basal stacking faults"
Melhem, Hassan. "Epitaxial Growth of Hexagonal Ge Planar Layers on Non-Polar Wurtzite Substrates". Electronic Thesis or Diss., université Paris-Saclay, 2025. http://www.theses.fr/2025UPAST011.
Texto completoSilicon and Germanium crystallizing in the cubic diamond (denoted 3C) structure, have been the cornerstone of the electronic industry due to their inherent properties. However, metastable crystal phase engineering has emerged as a powerful method for tuning electronic band structures and conduction properties, enabling new functionalities while maintaining chemical compatibility. Notably, Germanium within the hexagonal 2H phase exhibits a direct bandgap of 0.38 eV. The alloy SixGe(1-x)-2H demonstrates strong light emission with a tunable wavelength ranging from 1.8 µm to 3.5 µm, depending on silicon concentration (40% to 0%). These properties position SixGe(1-x)-2H as a "holy grail material" among group IV semiconductors, with promising applications in mid-infrared light emission (e.g., LEDs and lasers) and detection on silicon platform.Despite recent progress, synthesizing large volumes of high-quality Ge-2H remains a challenge. Until now, Ge-2H has been limited to nanostructures, including nanodomains formed by shear-induced phase transformation, core/shell nanowires, and nanobranches. These approaches restrict active volumes, hindering basic property investigation and scalable device manufacturing. Achieving high-quality planar crystals with controlled doping is essential for advancing SixGe(1-x)-2H integration.This thesis aims to pioneer the synthesis of planar layers of hexagonal Ge using Ultra High Vacuum - Vapor Phase Epitaxy (UHV-VPE) on hexagonal m-plane II-VI substrates such as CdS-2H and ZnS-4H. The work includes developing surface preparation techniques for II-VI compounds and conducting detailed studies on hexagonal structure formation in materials such as GaAs-4H, ZnS-2H (grown via Metal-Organic Chemical Vapor Deposition, MOCVD), and Ge in both 2H and 4H hexagonal phases.A crucial preliminary step involved preparing substrate surfaces, as their quality directly impacts the crystalline quality of the epitaxial layers. Surface preparation included chemical-mechanical polishing with a Br2-MeOH solution to remove surface contaminants, confirmed through XPS analysis. Challenges related to the thermal properties of CdS-2H and ZnS-4H substrates were addressed, including desorption of II-VI compounds and the formation of negative whiskers above 500°C.Epitaxial growth by UHV-VPE posed selectivity constraints on II-VI substrates, prompting the exploration of alternative growth configurations, such as using buffer template layers. This thesis presents the first synthesis of a GaAs layer in the 4H hexagonal structure grown by epitaxy on ZnS-4H m-plane substrate, along with a first characterization of basal stacking faults (BSFs) in this layer. The feasibility of synthesizing Ge on GaAs-4H was also investigated. A significant part of the work was dedicated to growth on the CdS-2H substrates, demonstrating the first Ge layer with nanoscale regions of Ge-2H epitaxy, providing proof of concept for structure replication of Ge-2H on II-VI m-plane surfaces. However, amorphous and highly defective regions were also observed. Process optimization led to the development of ZnS-2H template layers on CdS-2H using MOCVD, circumventing constraints of direct growth on CdS. A thorough investigation of growth regimes revealed a strong impact of growth temperature on the CdS substrate surface, significantly influencing crystalline quality. m-plane ZnS layers grown at 360°C exhibited a pure hexagonal structure with excellent epitaxial orientation relative to CdS-WZ substrates. Strain relaxation occurred through misfit dislocations at the interface due to lattice mismatches of 7.63% and 6.83% along the a- and c-axes, forming basal and prismatic stacking faults on {11-20} planes. Finally, as further proof of concept, the thesis presents evidence supporting the synthesis of a Ge layer with a partial hexagonal phase
Capítulos de libros sobre el tema "Basal stacking faults"
Agarwal, Anant, Sumi Krishnaswami, James Richmond, Craig Capell, Sei Hyung Ryu, John Palmour, Bruce Geil, Dimos Katsis, Charles J. Scozzie y Robert E. Stahlbush. "Influence of Basal Plane Dislocation Induced Stacking Faults on the Current Gain in SiC BJTs". En Silicon Carbide and Related Materials 2005, 1409–12. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-425-1.1409.
Texto completoJin, Z. H., J. Han, X. M. Su y Y. T. Zhu. "Basal-Plane Stacking-Fault Energies of Mg: A First-Principles Study of Li- and Al-Alloying Effects". En Supplemental Proceedings, 121–28. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118062142.ch15.
Texto completoWakabayashi, John. "Field and petrographic reconnaissance of Franciscan complex rocks of Mount Diablo, California: Imbricated ocean floor stratigraphy with a roof exhumation fault system". En Regional Geology of Mount Diablo, California: Its Tectonic Evolution on the North America Plate Boundary. Geological Society of America, 2021. http://dx.doi.org/10.1130/2021.1217(09).
Texto completoActas de conferencias sobre el tema "Basal stacking faults"
Monavarian, Morteza, Shopan Hafiz, Natalia Izyumskaya, Saikat Das, Ümit Özgür, Hadis Morkoç y Vitaliy Avrutin. "Wurtzite/zinc-blende electronic-band alignment in basal-plane stacking faults in semi-polar GaN". En SPIE OPTO, editado por Jen-Inn Chyi, Hiroshi Fujioka, Hadis Morkoç, Yasushi Nanishi, Ulrich T. Schwarz y Jong-In Shim. SPIE, 2016. http://dx.doi.org/10.1117/12.2213859.
Texto completoNishio, Johji, Aoi Okada, Chiharu Ota y Ryosuke Iijima. "Single Shockley Stacking Fault Expansion from Immobile Basal Plane Dislocations in 4H-SiC". En 2020 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2020. http://dx.doi.org/10.7567/ssdm.2020.d-4-04.
Texto completo