Siga este enlace para ver otros tipos de publicaciones sobre el tema: Baouendi-Grushin operator.

Artículos de revistas sobre el tema "Baouendi-Grushin operator"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 24 mejores artículos de revistas para su investigación sobre el tema "Baouendi-Grushin operator".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Laptev, Ari, Michael Ruzhansky y Nurgissa Yessirkegenov. "Hardy inequalities for Landau Hamiltonian and for Baouendi-Grushin operator with Aharonov-Bohm type magnetic field. Part I". MATHEMATICA SCANDINAVICA 125, n.º 2 (19 de octubre de 2019): 239–69. http://dx.doi.org/10.7146/math.scand.a-114892.

Texto completo
Resumen
In this paper we prove the Hardy inequalities for the quadratic form of the Laplacian with the Landau Hamiltonian type magnetic field. Moreover, we obtain a Poincaré type inequality and inequalities with more general families of weights. Furthermore, we establish weighted Hardy inequalities for the quadratic form of the magnetic Baouendi-Grushin operator for the magnetic field of Aharonov-Bohm type. For these, we show refinements of the known Hardy inequalities for the Baouendi-Grushin operator involving radial derivatives in some of the variables. The corresponding uncertainty type principles are also obtained.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Banerjee, Agnid y Ramesh Manna. "Carleman estimates for a class of variable coefficient degenerate elliptic operators with applications to unique continuation". Discrete & Continuous Dynamical Systems 41, n.º 11 (2021): 5105. http://dx.doi.org/10.3934/dcds.2021070.

Texto completo
Resumen
<p style='text-indent:20px;'>In this paper, we obtain new Carleman estimates for a class of variable coefficient degenerate elliptic operators whose constant coefficient model at one point is the so called Baouendi-Grushin operator. This generalizes the results obtained by the two of us with Garofalo in [<xref ref-type="bibr" rid="b10">10</xref>] where similar estimates were established for the "constant coefficient" Baouendi-Grushin operator. Consequently, we obtain: (ⅰ) a Bourgain-Kenig type quantitative uniqueness result in the variable coefficient setting; (ⅱ) and a strong unique continuation property for a class of degenerate sublinear equations. We also derive a subelliptic version of a scaling critical Carleman estimate proven by Regbaoui in the Euclidean setting using which we deduce a new unique continuation result in the case of scaling critical Hardy type potentials.</p>
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Bahrouni, Anouar, Vicenţiu D. Rădulescu y Dušan D. Repovš. "Nonvariational and singular double phase problems for the Baouendi-Grushin operator". Journal of Differential Equations 303 (diciembre de 2021): 645–66. http://dx.doi.org/10.1016/j.jde.2021.09.033.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Bahrouni, Anouar y Vicenţiu D. Rădulescu. "Singular double-phase systems with variable growth for the Baouendi-Grushin operator". Discrete & Continuous Dynamical Systems 41, n.º 9 (2021): 4283. http://dx.doi.org/10.3934/dcds.2021036.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Mihăilescu, Mihai, Denisa Stancu-Dumitru y Csaba Varga. "On the spectrum of a Baouendi–Grushin type operator: an Orlicz–Sobolev space setting approach". Nonlinear Differential Equations and Applications NoDEA 22, n.º 5 (8 de marzo de 2015): 1067–87. http://dx.doi.org/10.1007/s00030-015-0314-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Markasheva, V. A. y A. F. Tedeev. "Local and global estimates of the solutions of the Cauchy problem for quasilinear parabolic equations with a nonlinear operator of Baouendi-Grushin type". Mathematical Notes 85, n.º 3-4 (abril de 2009): 385–96. http://dx.doi.org/10.1134/s0001434609030092.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Metafune, Giorgio, Luigi Negro y Chiara Spina. "Lp estimates for Baouendi–Grushin operators". Pure and Applied Analysis 2, n.º 3 (17 de noviembre de 2020): 603–25. http://dx.doi.org/10.2140/paa.2020.2.603.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Jia, Xiaobiao y Shanshan Ma. "Holder estimates and asymptotic behavior for degenerate elliptic equations in the half space". Electronic Journal of Differential Equations 2023, n.º 01-37 (5 de abril de 2023): 33. http://dx.doi.org/10.58997/ejde.2023.33.

Texto completo
Resumen
In this article we investigate the asymptotic behavior at infinity of viscosity solutions to degenerate elliptic equations. We obtain Holder estimates, up to the flat boundary, by using the rescaling method. Also as a byproduct we obtain a Liouville type result on Baouendi-Grushin type operators.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Kombe, Ismail. "Nonlinear degenerate parabolic equations for Baouendi–Grushin operators". Mathematische Nachrichten 279, n.º 7 (mayo de 2006): 756–73. http://dx.doi.org/10.1002/mana.200310391.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Garofalo, Nicola y Dimiter Vassilev. "Strong Unique Continuation Properties of Generalized Baouendi–Grushin Operators". Communications in Partial Differential Equations 32, n.º 4 (11 de abril de 2007): 643–63. http://dx.doi.org/10.1080/03605300500532905.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Niu, Pengcheng y Jingbo Dou. "Hardy-Sobolev type inequalities for generalized Baouendi-Grushin operators". Miskolc Mathematical Notes 8, n.º 1 (2007): 73. http://dx.doi.org/10.18514/mmn.2007.142.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Kombe, Ismail y Abdullah Yener. "Weighted Rellich type inequalities related to Baouendi-Grushin operators". Proceedings of the American Mathematical Society 145, n.º 11 (10 de julio de 2017): 4845–57. http://dx.doi.org/10.1090/proc/13730.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Kombe, Ismail y Abdullah Yener. "General weighted Hardy type inequalities related to Baouendi-Grushin operators". Complex Variables and Elliptic Equations 63, n.º 3 (28 de mayo de 2017): 420–36. http://dx.doi.org/10.1080/17476933.2017.1318128.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

NIU, PENGCHENG, YANXIA CHEN y YAZHOU HAN. "SOME HARDY-TYPE INEQUALITIES FOR THE GENERALIZED BAOUENDI-GRUSHIN OPERATORS". Glasgow Mathematical Journal 46, n.º 3 (septiembre de 2004): 515–27. http://dx.doi.org/10.1017/s0017089504002034.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

TANIGUCHI, Setsuo. "AN APPLICATION OF THE PARTIAL MALLIAVIN CALCULUS TO BAOUENDI-GRUSHIN OPERATORS". Kyushu Journal of Mathematics 73, n.º 2 (2019): 417–31. http://dx.doi.org/10.2206/kyushujm.73.417.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Wang, Jia Lin y Peng Cheng Niu. "Unique continuation properties for generalized Baouendi-Grushin operators with singular weights". Acta Mathematica Sinica, English Series 27, n.º 8 (15 de julio de 2011): 1637–44. http://dx.doi.org/10.1007/s10114-011-8212-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Kombe, Ismail. "On the nonexistence of positive solutions to doubly nonlinear equations for Baouendi-Grushin operators". Discrete and Continuous Dynamical Systems 33, n.º 11/12 (mayo de 2013): 5167–76. http://dx.doi.org/10.3934/dcds.2013.33.5167.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Liu, Hairong y Xiaoping Yang. "Strong unique continuation property for fourth order Baouendi-Grushin type subelliptic operators with strongly singular potential". Journal of Differential Equations 385 (marzo de 2024): 57–85. http://dx.doi.org/10.1016/j.jde.2023.12.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Bahrouni, Anouar, Vicenţiu D. Rădulescu y Patrick Winkert. "Double phase problems with variable growth and convection for the Baouendi–Grushin operator". Zeitschrift für angewandte Mathematik und Physik 71, n.º 6 (11 de octubre de 2020). http://dx.doi.org/10.1007/s00033-020-01412-7.

Texto completo
Resumen
AbstractIn this paper we study a class of quasilinear elliptic equations with double phase energy and reaction term depending on the gradient. The main feature is that the associated functional is driven by the Baouendi–Grushin operator with variable coefficient. This partial differential equation is of mixed type and possesses both elliptic and hyperbolic regions. We first establish some new qualitative properties of a differential operator introduced recently by Bahrouni et al. (Nonlinearity 32(7):2481–2495, 2019). Next, under quite general assumptions on the convection term, we prove the existence of stationary waves by applying the theory of pseudomonotone operators. The analysis carried out in this paper is motivated by patterns arising in the theory of transonic flows.
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Letrouit, Cyril y Chenmin Sun. "OBSERVABILITY OF BAOUENDI–GRUSHIN-TYPE EQUATIONS THROUGH RESOLVENT ESTIMATES". Journal of the Institute of Mathematics of Jussieu, 14 de junio de 2021, 1–39. http://dx.doi.org/10.1017/s1474748021000207.

Texto completo
Resumen
Abstract In this article, we study the observability (or equivalently, the controllability) of some subelliptic evolution equations depending on their step. This sheds light on the speed of propagation of these equations, notably in the ‘degenerated directions’ of the subelliptic structure. First, for any $\gamma \geq 1$ , we establish a resolvent estimate for the Baouendi–Grushin-type operator $\Delta _{\gamma }=\partial _x^2+\left \lvert x\right \rvert ^{2\gamma }\partial _y^2$ , which has step $\gamma +1$ . We then derive consequences for the observability of the Schrödinger-type equation $i\partial _tu-\left (-\Delta _{\gamma }\right )^{s}u=0$ , where $s\in \mathbb N$ . We identify three different cases: depending on the value of the ratio $(\gamma +1)/s$ , observability may hold in arbitrarily small time or only for sufficiently large times or may even fail for any time. As a corollary of our resolvent estimate, we also obtain observability for heat-type equations $\partial _tu+\left (-\Delta _{\gamma }\right )^su=0$ and establish a decay rate for the damped wave equation associated with $\Delta _{\gamma }$ .
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Alsaedi, Ahmed, Vicenţiu D. Rădulescu y Bashir Ahmad. "Bifurcation analysis for degenerate problems with mixed regime and absorption". Bulletin of Mathematical Sciences, 4 de julio de 2020, 2050017. http://dx.doi.org/10.1142/s1664360720500174.

Texto completo
Resumen
We are concerned with the study of a bifurcation problem driven by a degenerate operator of Baouendi–Grushin type. Due to its degenerate structure, this differential operator has a mixed regime. Studying the combined effects generated by the absorption and the reaction terms, we establish the bifurcation behavior in two cases. First, if the absorption nonlinearity is dominating, then the problem admits solutions only for high perturbations of the reaction. In the case when the reaction dominates the absorption term, we prove that the problem admits nontrivial solutions for all the values of the parameter. The analysis developed in this paper is associated with patterns describing transonic flow restricted to subsonic regions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Arnaiz, Victor y Chenmin Sun. "Sharp Resolvent Estimate for the Damped-Wave Baouendi–Grushin Operator and Applications". Communications in Mathematical Physics, 7 de enero de 2023. http://dx.doi.org/10.1007/s00220-022-04606-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Jleli, Mohamed, Maria Alessandra Ragusa y Bessem Samet. "Nonlinear Liouville-type theorems for generalized Baouendi-Grushin operator on Riemannian manifolds". Advances in Differential Equations 28, n.º 1/2 (1 de enero de 2023). http://dx.doi.org/10.57262/ade028-0102-143.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Banerjee, Agnid, Nicola Garofalo y Ramesh Manna. "Carleman estimates for Baouendi–Grushin operators with applications to quantitative uniqueness and strong unique continuation". Applicable Analysis, 29 de enero de 2020, 1–22. http://dx.doi.org/10.1080/00036811.2020.1713314.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía