Literatura académica sobre el tema "Baouendi-Grushin operator"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Baouendi-Grushin operator".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Baouendi-Grushin operator"
Laptev, Ari, Michael Ruzhansky y Nurgissa Yessirkegenov. "Hardy inequalities for Landau Hamiltonian and for Baouendi-Grushin operator with Aharonov-Bohm type magnetic field. Part I". MATHEMATICA SCANDINAVICA 125, n.º 2 (19 de octubre de 2019): 239–69. http://dx.doi.org/10.7146/math.scand.a-114892.
Texto completoBanerjee, Agnid y Ramesh Manna. "Carleman estimates for a class of variable coefficient degenerate elliptic operators with applications to unique continuation". Discrete & Continuous Dynamical Systems 41, n.º 11 (2021): 5105. http://dx.doi.org/10.3934/dcds.2021070.
Texto completoBahrouni, Anouar, Vicenţiu D. Rădulescu y Dušan D. Repovš. "Nonvariational and singular double phase problems for the Baouendi-Grushin operator". Journal of Differential Equations 303 (diciembre de 2021): 645–66. http://dx.doi.org/10.1016/j.jde.2021.09.033.
Texto completoBahrouni, Anouar y Vicenţiu D. Rădulescu. "Singular double-phase systems with variable growth for the Baouendi-Grushin operator". Discrete & Continuous Dynamical Systems 41, n.º 9 (2021): 4283. http://dx.doi.org/10.3934/dcds.2021036.
Texto completoMihăilescu, Mihai, Denisa Stancu-Dumitru y Csaba Varga. "On the spectrum of a Baouendi–Grushin type operator: an Orlicz–Sobolev space setting approach". Nonlinear Differential Equations and Applications NoDEA 22, n.º 5 (8 de marzo de 2015): 1067–87. http://dx.doi.org/10.1007/s00030-015-0314-5.
Texto completoMarkasheva, V. A. y A. F. Tedeev. "Local and global estimates of the solutions of the Cauchy problem for quasilinear parabolic equations with a nonlinear operator of Baouendi-Grushin type". Mathematical Notes 85, n.º 3-4 (abril de 2009): 385–96. http://dx.doi.org/10.1134/s0001434609030092.
Texto completoMetafune, Giorgio, Luigi Negro y Chiara Spina. "Lp estimates for Baouendi–Grushin operators". Pure and Applied Analysis 2, n.º 3 (17 de noviembre de 2020): 603–25. http://dx.doi.org/10.2140/paa.2020.2.603.
Texto completoJia, Xiaobiao y Shanshan Ma. "Holder estimates and asymptotic behavior for degenerate elliptic equations in the half space". Electronic Journal of Differential Equations 2023, n.º 01-37 (5 de abril de 2023): 33. http://dx.doi.org/10.58997/ejde.2023.33.
Texto completoKombe, Ismail. "Nonlinear degenerate parabolic equations for Baouendi–Grushin operators". Mathematische Nachrichten 279, n.º 7 (mayo de 2006): 756–73. http://dx.doi.org/10.1002/mana.200310391.
Texto completoGarofalo, Nicola y Dimiter Vassilev. "Strong Unique Continuation Properties of Generalized Baouendi–Grushin Operators". Communications in Partial Differential Equations 32, n.º 4 (11 de abril de 2007): 643–63. http://dx.doi.org/10.1080/03605300500532905.
Texto completoTesis sobre el tema "Baouendi-Grushin operator"
Tamekue, Cyprien. "Controllability, Visual Illusions and Perception". Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPAST105.
Texto completoThis thesis explores two distinct control theory applications in different scientific domains: physics and neuroscience. The first application focuses on the null controllability of the parabolic, spherical Baouendi-Grushin equation. In contrast, the second application involves the mathematical description of the MacKay-type visual illusions, focusing on the MacKay effect and Billock and Tsou's psychophysical experiments by controlling the one-layer Amari-type neural fields equation. Additionally, intending to study input-to-state stability and robust stabilization, the thesis investigates the existence of equilibrium in a multi-layer neural fields population model of Wilson-Cowan, specifically when the sensory input is a proportional feedback acting only on the system's state of the populations of excitatory neurons.In the first part, we investigate the null controllability properties of the parabolic equation associated with the Baouendi-Grushin operator defined by the canonical almost-Riemannian structure on the 2-dimensional sphere. It presents a degeneracy at the equator of the sphere. We provide some null controllability properties of this equation to this curved setting, which generalize that of the parabolic Baouendi-Grushin equation defined on the plane.Regarding neuroscience, initially, the focus lies on the description of visual illusions for which the tools of bifurcation theory and even multiscale analysis appear unsuitable. In our study, we use the neural fields equation of Amari-type in which the sensory input is interpreted as a cortical representation of the visual stimulus used in each experiment. It contains a localised distributed control function that models the stimulus's specificity, e.g., the redundant information in the centre of MacKay's funnel pattern (``MacKay rays'') or the fact that visual stimuli in Billock and Tsou's experiments are localized in the visual field.Always within the framework of neurosciences, we investigate the existence of equilibrium in a multi-layers neural fields population model of Wilson-Cowan when the sensory input is a proportional feedback that acts only on the system's state of the population of excitatory neurons. There, we provide a mild condition on the response functions under which such an equilibrium exists. The interest of this work lies in its application in studying the disruption of pathological brain oscillations associated with Parkinson's disease when stimulating and measuring only the population of excitatory neurons
Actas de conferencias sobre el tema "Baouendi-Grushin operator"
Garofalo, Nicola y Dimiter Vassilev. "Strong Unique Continuation for Generalized Baouendi-Grushin Operators". En Proceedings of the 4th International ISAAC Congress. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701732_0021.
Texto completo