Artículos de revistas sobre el tema "Bandit Contextuel"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Bandit Contextuel".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Gisselbrecht, Thibault, Sylvain Lamprier y Patrick Gallinari. "Collecte ciblée à partir de flux de données en ligne dans les médias sociaux. Une approche de bandit contextuel". Document numérique 19, n.º 2-3 (30 de diciembre de 2016): 11–30. http://dx.doi.org/10.3166/dn.19.2-3.11-30.
Texto completoDimakopoulou, Maria, Zhengyuan Zhou, Susan Athey y Guido Imbens. "Balanced Linear Contextual Bandits". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 de julio de 2019): 3445–53. http://dx.doi.org/10.1609/aaai.v33i01.33013445.
Texto completoTong, Ruoyi. "A survey of the application and technical improvement of the multi-armed bandit". Applied and Computational Engineering 77, n.º 1 (16 de julio de 2024): 25–31. http://dx.doi.org/10.54254/2755-2721/77/20240631.
Texto completoYang, Luting, Jianyi Yang y Shaolei Ren. "Contextual Bandits with Delayed Feedback and Semi-supervised Learning (Student Abstract)". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 18 (18 de mayo de 2021): 15943–44. http://dx.doi.org/10.1609/aaai.v35i18.17968.
Texto completoSharaf, Amr y Hal Daumé III. "Meta-Learning Effective Exploration Strategies for Contextual Bandits". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 11 (18 de mayo de 2021): 9541–48. http://dx.doi.org/10.1609/aaai.v35i11.17149.
Texto completoDu, Yihan, Siwei Wang y Longbo Huang. "A One-Size-Fits-All Solution to Conservative Bandit Problems". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 8 (18 de mayo de 2021): 7254–61. http://dx.doi.org/10.1609/aaai.v35i8.16891.
Texto completoVaratharajah, Yogatheesan y Brent Berry. "A Contextual-Bandit-Based Approach for Informed Decision-Making in Clinical Trials". Life 12, n.º 8 (21 de agosto de 2022): 1277. http://dx.doi.org/10.3390/life12081277.
Texto completoLi, Jialian, Chao Du y Jun Zhu. "A Bayesian Approach for Subset Selection in Contextual Bandits". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 9 (18 de mayo de 2021): 8384–91. http://dx.doi.org/10.1609/aaai.v35i9.17019.
Texto completoQu, Jiaming. "Survey of dynamic pricing based on Multi-Armed Bandit algorithms". Applied and Computational Engineering 37, n.º 1 (22 de enero de 2024): 160–65. http://dx.doi.org/10.54254/2755-2721/37/20230497.
Texto completoAtsidakou, Alexia, Constantine Caramanis, Evangelia Gergatsouli, Orestis Papadigenopoulos y Christos Tzamos. "Contextual Pandora’s Box". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 10 (24 de marzo de 2024): 10944–52. http://dx.doi.org/10.1609/aaai.v38i10.28969.
Texto completoZhang, Qianqian. "Real-world Applications of Bandit Algorithms: Insights and Innovations". Transactions on Computer Science and Intelligent Systems Research 5 (12 de agosto de 2024): 753–58. http://dx.doi.org/10.62051/ge4sk783.
Texto completoWang, Zhiyong, Xutong Liu, Shuai Li y John C. S. Lui. "Efficient Explorative Key-Term Selection Strategies for Conversational Contextual Bandits". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 8 (26 de junio de 2023): 10288–95. http://dx.doi.org/10.1609/aaai.v37i8.26225.
Texto completoBansal, Nipun, Manju Bala y Kapil Sharma. "FuzzyBandit An Autonomous Personalized Model Based on Contextual Multi Arm Bandits Using Explainable AI". Defence Science Journal 74, n.º 4 (26 de abril de 2024): 496–504. http://dx.doi.org/10.14429/dsj.74.19330.
Texto completoTang, Qiao, Hong Xie, Yunni Xia, Jia Lee y Qingsheng Zhu. "Robust Contextual Bandits via Bootstrapping". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 13 (18 de mayo de 2021): 12182–89. http://dx.doi.org/10.1609/aaai.v35i13.17446.
Texto completoWu, Jiazhen. "In-depth Exploration and Implementation of Multi-Armed Bandit Models Across Diverse Fields". Highlights in Science, Engineering and Technology 94 (26 de abril de 2024): 201–5. http://dx.doi.org/10.54097/d3ez0n61.
Texto completoWang, Kun. "Conservative Contextual Combinatorial Cascading Bandit". IEEE Access 9 (2021): 151434–43. http://dx.doi.org/10.1109/access.2021.3124416.
Texto completoElwood, Adam, Marco Leonardi, Ashraf Mohamed y Alessandro Rozza. "Maximum Entropy Exploration in Contextual Bandits with Neural Networks and Energy Based Models". Entropy 25, n.º 2 (18 de enero de 2023): 188. http://dx.doi.org/10.3390/e25020188.
Texto completoBaheri, Ali. "Multilevel Constrained Bandits: A Hierarchical Upper Confidence Bound Approach with Safety Guarantees". Mathematics 13, n.º 1 (3 de enero de 2025): 149. https://doi.org/10.3390/math13010149.
Texto completoStrong, Emily, Bernard Kleynhans y Serdar Kadıoğlu. "MABWISER: Parallelizable Contextual Multi-armed Bandits". International Journal on Artificial Intelligence Tools 30, n.º 04 (junio de 2021): 2150021. http://dx.doi.org/10.1142/s0218213021500214.
Texto completoLee, Kyungbok, Myunghee Cho Paik, Min-hwan Oh y Gi-Soo Kim. "Mixed-Effects Contextual Bandits". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 12 (24 de marzo de 2024): 13409–17. http://dx.doi.org/10.1609/aaai.v38i12.29243.
Texto completoOh, Min-hwan y Garud Iyengar. "Multinomial Logit Contextual Bandits: Provable Optimality and Practicality". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 10 (18 de mayo de 2021): 9205–13. http://dx.doi.org/10.1609/aaai.v35i10.17111.
Texto completoZhao, Yisen. "Enhancing conversational recommendation systems through the integration of KNN with ConLinUCB contextual bandits". Applied and Computational Engineering 68, n.º 1 (6 de junio de 2024): 8–16. http://dx.doi.org/10.54254/2755-2721/68/20241388.
Texto completoChen, Qiufan. "A survey on contextual multi-armed bandits". Applied and Computational Engineering 53, n.º 1 (28 de marzo de 2024): 287–95. http://dx.doi.org/10.54254/2755-2721/53/20241593.
Texto completoMohaghegh Neyshabouri, Mohammadreza, Kaan Gokcesu, Hakan Gokcesu, Huseyin Ozkan y Suleyman Serdar Kozat. "Asymptotically Optimal Contextual Bandit Algorithm Using Hierarchical Structures". IEEE Transactions on Neural Networks and Learning Systems 30, n.º 3 (marzo de 2019): 923–37. http://dx.doi.org/10.1109/tnnls.2018.2854796.
Texto completoGu, Haoran, Yunni Xia, Hong Xie, Xiaoyu Shi y Mingsheng Shang. "Robust and efficient algorithms for conversational contextual bandit". Information Sciences 657 (febrero de 2024): 119993. http://dx.doi.org/10.1016/j.ins.2023.119993.
Texto completoNarita, Yusuke, Shota Yasui y Kohei Yata. "Efficient Counterfactual Learning from Bandit Feedback". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 de julio de 2019): 4634–41. http://dx.doi.org/10.1609/aaai.v33i01.33014634.
Texto completoLi, Zhaoyu y Qian Ai. "Managing Considerable Distributed Resources for Demand Response: A Resource Selection Strategy Based on Contextual Bandit". Electronics 12, n.º 13 (23 de junio de 2023): 2783. http://dx.doi.org/10.3390/electronics12132783.
Texto completoHuang, Wen y Xintao Wu. "Robustly Improving Bandit Algorithms with Confounded and Selection Biased Offline Data: A Causal Approach". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 18 (24 de marzo de 2024): 20438–46. http://dx.doi.org/10.1609/aaai.v38i18.30027.
Texto completoSpieker, Helge y Arnaud Gotlieb. "Adaptive metamorphic testing with contextual bandits". Journal of Systems and Software 165 (julio de 2020): 110574. http://dx.doi.org/10.1016/j.jss.2020.110574.
Texto completoJagerman, Rolf, Ilya Markov y Maarten De Rijke. "Safe Exploration for Optimizing Contextual Bandits". ACM Transactions on Information Systems 38, n.º 3 (26 de junio de 2020): 1–23. http://dx.doi.org/10.1145/3385670.
Texto completoKakadiya, Ashutosh, Sriraam Natarajan y Balaraman Ravindran. "Relational Boosted Bandits". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 13 (18 de mayo de 2021): 12123–30. http://dx.doi.org/10.1609/aaai.v35i13.17439.
Texto completoSeifi, Farshad y Seyed Taghi Akhavan Niaki. "Optimizing contextual bandit hyperparameters: A dynamic transfer learning-based framework". International Journal of Industrial Engineering Computations 15, n.º 4 (2024): 951–64. http://dx.doi.org/10.5267/j.ijiec.2024.6.003.
Texto completoZhao, Yafei y Long Yang. "Constrained contextual bandit algorithm for limited-budget recommendation system". Engineering Applications of Artificial Intelligence 128 (febrero de 2024): 107558. http://dx.doi.org/10.1016/j.engappai.2023.107558.
Texto completoYang, Jianyi y Shaolei Ren. "Robust Bandit Learning with Imperfect Context". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 12 (18 de mayo de 2021): 10594–602. http://dx.doi.org/10.1609/aaai.v35i12.17267.
Texto completoLiu, Zizhuo. "Investigation of progress and application related to Multi-Armed Bandit algorithms". Applied and Computational Engineering 37, n.º 1 (22 de enero de 2024): 155–59. http://dx.doi.org/10.54254/2755-2721/37/20230496.
Texto completoSemenov, Alexander, Maciej Rysz, Gaurav Pandey y Guanglin Xu. "Diversity in news recommendations using contextual bandits". Expert Systems with Applications 195 (junio de 2022): 116478. http://dx.doi.org/10.1016/j.eswa.2021.116478.
Texto completoSui, Guoxin y Yong Yu. "Bayesian Contextual Bandits for Hyper Parameter Optimization". IEEE Access 8 (2020): 42971–79. http://dx.doi.org/10.1109/access.2020.2977129.
Texto completoTekin, Cem y Mihaela van der Schaar. "Distributed Online Learning via Cooperative Contextual Bandits". IEEE Transactions on Signal Processing 63, n.º 14 (julio de 2015): 3700–3714. http://dx.doi.org/10.1109/tsp.2015.2430837.
Texto completoQin, Yuzhen, Yingcong Li, Fabio Pasqualetti, Maryam Fazel y Samet Oymak. "Stochastic Contextual Bandits with Long Horizon Rewards". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 8 (26 de junio de 2023): 9525–33. http://dx.doi.org/10.1609/aaai.v37i8.26140.
Texto completoXu, Xiao, Fang Dong, Yanghua Li, Shaojian He y Xin Li. "Contextual-Bandit Based Personalized Recommendation with Time-Varying User Interests". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 04 (3 de abril de 2020): 6518–25. http://dx.doi.org/10.1609/aaai.v34i04.6125.
Texto completoTekin, Cem y Eralp Turgay. "Multi-objective Contextual Multi-armed Bandit With a Dominant Objective". IEEE Transactions on Signal Processing 66, n.º 14 (15 de julio de 2018): 3799–813. http://dx.doi.org/10.1109/tsp.2018.2841822.
Texto completoYoon, Gyugeun y Joseph Y. J. Chow. "Contextual Bandit-Based Sequential Transit Route Design under Demand Uncertainty". Transportation Research Record: Journal of the Transportation Research Board 2674, n.º 5 (mayo de 2020): 613–25. http://dx.doi.org/10.1177/0361198120917388.
Texto completoLi, Litao. "Exploring Multi-Armed Bandit algorithms: Performance analysis in dynamic environments". Applied and Computational Engineering 34, n.º 1 (22 de enero de 2024): 252–59. http://dx.doi.org/10.54254/2755-2721/34/20230338.
Texto completoZhu, Tan, Guannan Liang, Chunjiang Zhu, Haining Li y Jinbo Bi. "An Efficient Algorithm for Deep Stochastic Contextual Bandits". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 12 (18 de mayo de 2021): 11193–201. http://dx.doi.org/10.1609/aaai.v35i12.17335.
Texto completoMartín H., José Antonio y Ana M. Vargas. "Linear Bayes policy for learning in contextual-bandits". Expert Systems with Applications 40, n.º 18 (diciembre de 2013): 7400–7406. http://dx.doi.org/10.1016/j.eswa.2013.07.041.
Texto completoRaghavan, Manish, Aleksandrs Slivkins, Jennifer Wortman Vaughan y Zhiwei Steven Wu. "Greedy Algorithm Almost Dominates in Smoothed Contextual Bandits". SIAM Journal on Computing 52, n.º 2 (12 de abril de 2023): 487–524. http://dx.doi.org/10.1137/19m1247115.
Texto completoAyala-Romero, Jose A., Andres Garcia-Saavedra y Xavier Costa-Perez. "Risk-Aware Continuous Control with Neural Contextual Bandits". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 19 (24 de marzo de 2024): 20930–38. http://dx.doi.org/10.1609/aaai.v38i19.30083.
Texto completoPilani, Akshay, Kritagya Mathur, Himanshu Agrawal, Deeksha Chandola, Vinay Anand Tikkiwal y Arun Kumar. "Contextual Bandit Approach-based Recommendation System for Personalized Web-based Services". Applied Artificial Intelligence 35, n.º 7 (6 de abril de 2021): 489–504. http://dx.doi.org/10.1080/08839514.2021.1883855.
Texto completoLi, Xinbin, Jiajia Liu, Lei Yan, Song Han y Xinping Guan. "Relay Selection in Underwater Acoustic Cooperative Networks: A Contextual Bandit Approach". IEEE Communications Letters 21, n.º 2 (febrero de 2017): 382–85. http://dx.doi.org/10.1109/lcomm.2016.2625300.
Texto completoGisselbrecht, Thibault, Sylvain Lamprier y Patrick Gallinari. "Dynamic Data Capture from Social Media Streams: A Contextual Bandit Approach". Proceedings of the International AAAI Conference on Web and Social Media 10, n.º 1 (4 de agosto de 2021): 131–40. http://dx.doi.org/10.1609/icwsm.v10i1.14734.
Texto completo