Siga este enlace para ver otros tipos de publicaciones sobre el tema: Bacterial wall.

Tesis sobre el tema "Bacterial wall"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores tesis para su investigación sobre el tema "Bacterial wall".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Somner, Elizabeth Ann. "Antibiotic inhibitors of bacterial cell wall synthesis". Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.359831.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Mattinson-Rose, A. D. "Classification of amycolate wall chemotype IV actinomycetes". Thesis, University of Newcastle Upon Tyne, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.374849.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Bjertsjö, Rennermalm Anna. "Staphylococcal cell wall associated proteins : characteristics and host interactions /". Stockholm, 2005. http://diss.kib.ki.se/2005/91-7140-542-9/.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Markovski, Monica. "Bacterial Cell Wall Synthases Require Outer Membrane Lipoprotein Cofactors". Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10146.

Texto completo
Resumen
To fortify their cytoplasmic membrane and protect it from osmotic rupture, most bacteria surround themselves with a peptidoglycan (PG) exoskeleton. The PG synthases that build this structure are called penicillin-binding proteins (PBPs). Since they are the targets of penicillin and related antibiotics, the structures and in vitro biochemical functions of the PBPs have been extensively studied. However, the in vivo functions of the PBPs and the factors they work with to build the PG meshwork remain poorly understood. PBPs work in the context of multicomponent complexes organized by cytoskeletal elements. A major outstanding question has been whether or not these complexes contain factors required for PBP function. I addressed this using Escherichia coli as a model system by taking advantage of the synthetic lethal phenotype resulting from simultaneous inactivation of the major PG synthases: PBP1a and PBP1b. Using a screen for mutants synthetically lethal with the inactivation of PBP1b, I identified LpoA as a factor required for PBP1a function. A colleague in the lab performed the analogous screen for mutants synthetically lethal with the inactivation of PBP1a and identified LpoB as a factor required for PBP1b function. We showed that the Lpo factors are outer membrane lipoproteins that form specific trans-envelope complexes with their cognate PBPs in the inner membrane and that LpoB can stimulate the activity of PBP1b in vitro. Our results reveal unexpected complexity in the control of PBP activity and indicate that they likely receive regulatory input from the outer membrane in addition to cytoskeletal elements in the cytoplasm. To investigate the role of LpoB in morphogenesis further, I took a genetic approach that has identified PBP1b* variants capable of functioning in vivo in the absence of LpoB. Preliminary characterization of these variants indicates that LpoB has cellular functions in addition to PBP1b activation and that LpoB may be important for coordinating the two different catalytic activities of PBP1b. Future study of these mutants is likely to uncover important insights into PBP function and their control by the Lpo factors. These insights may open new avenues for the development of novel therapeutics that target the PBPs.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Millward-Sadler, Sarah Jane. "The molecular biology of bacterial xylanases". Thesis, University of Newcastle Upon Tyne, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318256.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Poole, Deborah Marie. "Molecular analysis of plant cell wall hydrolases of bacterial origin". Thesis, University of Newcastle Upon Tyne, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.238939.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Choudhry, Anthony Ejaz. "Inhibition of bacterial cell wall biosynthesis by the affinity label N-bromoacetylglucosamine". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ40403.pdf.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Lancaster, M. J. "Studies on the export of extracellular proteins through the bacterial cell wall". Thesis, University of Bristol, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356221.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Reynolds, Catherine B. "A lesson in bacterial variability : the C. difficile cell wall protein CwpV". Thesis, Imperial College London, 2011. http://hdl.handle.net/10044/1/6993.

Texto completo
Resumen
Clostridium difficile is the main cause of antibiotic-associated diarrhea, leading to significant morbidity and mortality, and putting considerable economic pressure on healthcare systems. Current knowledge of the molecular basis of pathogenesis is limited primarily to the activities and regulation of two major toxins. In contrast, little is known of the mechanisms used to colonise the enteric system. C. difficile expresses a proteinaceous array on its cell surface known as the S-layer, consisting primarily of SlpA and a family of homologues, the cell wall protein (CWP) family. CwpV is the largest member of this family. CwpV is expressed in a phase-variable manner controlled by an invertible DNA switch, the cwpV switch. The novel mechanism controlling this phase variation has been charaterised using enzymatic reporter assays. A site-specific recombinase (RecV) catalyzing the inversion of the cwpV switch has been identified. Knocking out this recombinase has enabled isolation of cwpV switch locked ON and locked OFF strains of C. difficile, indicating that cwpV switch orientation is the primary determinant of CwpV expression. CwpV is post-translationally cleaved and expressed on the cell surface as two proteins that form a stable complex, with one subunit responsible for the noncovalent cell wall anchoring of the other large repetitive subunit. Due to the significant heterogeneity of C. difficile strains the characteristics of CwpV across a panel of strains were investigated. The cwpV switch and recV are conserved across diverse strains and all strains tested express CwpV in a phase variable manner. The N-terminus of CwpV is well conserved, however the C-terminal repetitive domain of CwpV varies markedly. Five different types have been identified and shown to be antigenically distinct. All types of CwpV repeats promote aggregation of C. difficile cells, which may be an important function during infection. These findings suggest a complex evolutionary history for CwpV.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Rayner, Joanna Clare. "The role of the bacterial cell wall in biofilm formation and antibiotic susceptibility". Thesis, University of Exeter, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.388624.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Al-Bar, Omar Abdulrahman Mostafa. "Modified amino acids and peptides as potential inhibitors of bacterial cell wall biosynthesis". Thesis, University of Southampton, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303364.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Renner-Schneck, Michaela Gabriele [Verfasser] y Thilo [Akademischer Betreuer] Stehle. "Bacterial cell wall recycling in molecular detail / Michaela Gabriele Renner-Schneck ; Betreuer: Thilo Stehle". Tübingen : Universitätsbibliothek Tübingen, 2015. http://d-nb.info/1163397458/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Chu, Michele, Michael J. G. Mallozzi, Bryan P. Roxas, Lisa Bertolo, Mario A. Monteiro, Al Agellon, V. K. Viswanathan y Gayatri Vedantam. "A Clostridium difficile Cell Wall Glycopolymer Locus Influences Bacterial Shape, Polysaccharide Production and Virulence". PUBLIC LIBRARY SCIENCE, 2016. http://hdl.handle.net/10150/622410.

Texto completo
Resumen
Clostridium difficile is a diarrheagenic pathogen associated with significant mortality and morbidity. While its glucosylating toxins are primary virulence determinants, there is increasing appreciation of important roles for non-toxin factors in C. difficile pathogenesis. Cell wall glycopolymers (CWGs) influence the virulence of various pathogens. Five C. difficile CWGs, including PSII, have been structurally characterized, but their biosynthesis and significance in C. difficile infection is unknown. We explored the contribution of a conserved CWG locus to C. difficile cell-surface integrity and virulence. Attempts at disrupting multiple genes in the locus, including one encoding a predicted CWG exporter mviN, were unsuccessful, suggesting essentiality of the respective gene products. However, antisense RNA-mediated mviN downregulation resulted in slight morphology defects, retarded growth, and decreased surface PSII deposition. Two other genes, lcpA and lcpB, with putative roles in CWG anchoring, could be disrupted by insertional inactivation. lcpA(-) and lcpB(-) mutants had distinct phenotypes, implying non-redundant roles for the respective proteins. The lcpB mutant was defective in surface PSII deposition and shedding, and exhibited a remodeled cell surface characterized by elongated and helical morphology, aberrantly-localized cell septae, and an altered surface-anchored protein profile. Both lcpA(-) and lcpB(-) strains also displayed heightened virulence in a hamster model of C. difficile disease. We propose that gene products of the C. difficile CWG locus are essential, that they direct the production/assembly of key antigenic surface polysaccharides, and thereby have complex roles in virulence.
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Renner-Schneck, Michaela [Verfasser] y Thilo [Akademischer Betreuer] Stehle. "Bacterial cell wall recycling in molecular detail / Michaela Gabriele Renner-Schneck ; Betreuer: Thilo Stehle". Tübingen : Universitätsbibliothek Tübingen, 2015. http://d-nb.info/1163397458/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Xayarath, Bobbi. "Effects of specific alterations in capsule structure on Streptococcus pneumoniae capsule assembly and virulence". Thesis, Birmingham, Ala. : University of Alabama at Birmingham, 2007. https://www.mhsl.uab.edu/dt/2008r/xayarath.pdf.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Cole, Jason Nicklaus. "Characterisation of cell wall proteins, virulence factor maturation and invasive disease trigger of Group A streptococcus". Access electronically, 2006. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20070130.144214/index.html.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Finney, Simon Jonathan. "Leukocyte recruitment in vivo : diverse effects of gram positive and gram negative bacterial cell wall components". Thesis, Imperial College London, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.413481.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Mhatre, Eisha [Verfasser], Ákos T. Gutachter] Kovács, Stefan [Gutachter] [Schuster y Nicola [Gutachter] Stanley-Wall. "Extrinsic and intrinsic factors governing bacterial biofilms / Eisha Mhatre ; Gutachter: Ákos T. Kovács, Stefan Schuster, Nicola Stanley-Wall". Jena : Friedrich-Schiller-Universität Jena, 2017. http://d-nb.info/1177598965/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Büttner, Felix Michael [Verfasser] y Thilo [Akademischer Betreuer] Stehle. "Modulation of the bacterial cell wall by N‐acetylmuramoyl‐L‐alanine amidases / Felix Michael Büttner ; Betreuer: Thilo Stehle". Tübingen : Universitätsbibliothek Tübingen, 2016. http://d-nb.info/1164169521/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Mhatre, Eisha [Verfasser], Ákos Tibor [Gutachter] Kovács, Stefan [Gutachter] Schuster y Nicola [Gutachter] Stanley-Wall. "Extrinsic and intrinsic factors governing bacterial biofilms / Eisha Mhatre ; Gutachter: Ákos T. Kovács, Stefan Schuster, Nicola Stanley-Wall". Jena : Friedrich-Schiller-Universität Jena, 2017. http://nbn-resolving.de/urn:nbn:de:gbv:27-dbt-20170614-1154281.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Laddomada, Federica. "Structure et assemblage de complexes des enzymes Mur, essentielles pour la synthèse de la paroi bactérienne". Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAV090.

Texto completo
Resumen
Les enzymes de la famille Mur (MurA-MurG) sont essentielles pour la survie bactérienne, car elles catalysent les étapes cytoplasmiques de la biosynthèse du peptidoglycane, la principale composante de la paroi cellulaire. En outre, les Murs métabolisent des molécules qui sont absentes chez les eucaryotes, et ces enzymes sont structurellement et biochimiquement tractables. Cependant, malgré le fait que nombreux inhibiteurs anti-Mur ont été développés, un nombre tres réduit de ces molécules ont montré une activité antibactérienne prometteuse, ce qui a incité l'hypothèse selon laquelle, dans le cytoplasme bactérien, les enzymes Mur peuvent exister dans un complexe où les sites actifs sont à proximité, bloquant donc l'accès de petites molécules venant de l'extérieur. Cette hypothèse est soutenue par l'observation selon laquelle, dans de nombreux organismes, les gènes codant pour les enzymes Mur sont présents dans un seul opéron, souvent dans le même ordre; en outre, souvent des paires de gènes sont fusionnées pour générer un seul polypeptide, préconisant la possibilité que des complexes entre ces enzymes pourraient être formés dès qu'ils sont synthétisés. Nous avons obtenu les premières informations structurales et fonctionnelles sur la forme fusionnée MurE-MurF, présente dans le pathogène humain Bordetella pertussis, et nous avons montré qu'elle interagit avec la glycosyltransférase périphérique MurG, ce qui suggère la présence d'un complexe enzymatique ternaire. De façon intéressante, nous avons constaté que MurG de B. pertussis est capable de s'associer avec elle-même et de former différentes espèces oligomériques. Cette découverte pourrait renforcer le rôle de MurG en tant que protéine agissant comme une plateform capable d'ancrer d'autres enzymes Mur à la face interne de la membrane cytoplasmique bactérienne. Nos resultats pourront également être explorés pour comprendre le rôle potentiel de MurG en tant que régulateur de l'activité des enzymes de synthèse du PG. Ces résultats passionnants ouvriront le chemin vers la compréhension du mecanisme d’interaction des enzymes Mur dans le cytoplasme bactérien et pourraient permettre l'emploi éventuel des Murs comme cibles de facto pour développer de nouveaux antibiotiques
Enzymes of the Mur family (MurA-MurG) are essential for bacteria, since they catalyse the cytoplasmic steps of peptidoglycan biosynthesis, the major component of bacterial cell wall; they metabolize molecules that do not exist in eukaryotes, and are structurally and biochemically tractable. However, despite the fact that many anti-Mur inhibitors have been developed, few of these molecules have shown promising antibacterial activity, which has prompted the hypothesis that within the bacterial cytoplasm Mur enzymes may exist in a complex where the active sites are in closed proximity, blocking small molecule access from the outside. This suggestion is supported by the observation that in many organisms, genes encoding Mur enzymes are present in a single operon, often in the same order, and often pairs of genes are fused to generate a single polypeptide, advocating the possibility that complexes between these enzymes could be formed as soon as they are synthesized. We have obtained the first structural and functional information on the MurE-MurF fused form, present in the human pathogen Bordetella pertussis, and shown that it interacts with the peripheral glycosyltransferase MurG, suggesting the presence of a ternary enzymatic complex. Interestingly, we have found that B. pertussis MurG is able to self-associate and form different oligomeric species. This finding could strengthen the hypothesis of MurG as a scaffold protein capable of anchoring other Murs to the inner face of bacterial inner membrane, but could be also further explored to understand its potential role as a regulator of the activity of PG synthesis enzymes. These exciting results will open the path towards the understanding of how Mur enzymes interact within the bacterial cytoplasm, and could permit the eventual employment of Mur enzymes as de facto targets for novel antibiotic development
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Wei, Yuping. "Characterization of two Bacillus subtilis penicillin-binding protein-coding genes, ykuA (pbpH) and yrrR (pbpI)". Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/34900.

Texto completo
Resumen

Penicillin-binding proteins (PBPs) are required in the synthesis of the cell wall of bacteria. In Bacillus subtilis, PBPs play important roles in the life cycle, including both vegetative growth and sporulation, and contribute to the formation of the different structures of vegetative cell wall and spore cortex. The B. subtilis genome sequencing project revealed there were two uncharacterized genes, ykuA and yrrR, with extensive sequence similarity to class B PBPs. These two genes are renamed and referred to henceforth as pbpH and pbpI, respectively.

A sequence alignment of the predicted product of pbpH against the microbial protein database demonstrated that the most similar protein in B. subtilis is PBP2A and in E. coli is PBP2. This suggested that PbpH belongs to a group of the genes required for maintaining the rod shape of the cell. Study of a pbpH-lacZ fusion showed that pbpH was expressed weakly during vegetative growth and the expression reached the highest level at the transition from exponential phase to stationary phase. The combination of a pbpA deletion and the pbpH deletion was lethal and double mutant strains lacking pbpH and pbpC or pbpI (also named yrrR) were viable. The viable mutants were indistinguishable from the wild-type except that the vegetative PG of the pbpC pbpH strain had a slightly slightly lower amount of disaccharide tetrapeptide with 1 amidation and higher amount of disaccharide tripeptide tetrapeptide with 2 amidations when compared to others strains. This suggests that PbpC (PBP3) is involved in vegetative PG synthesis but only affects the PG structure with a very low efficiency.

A pbpA pbpH double mutant containing a xylose-regulated pbpH gene inserted into the chromosome at the amyE locus was constructed. Depletion of PbpH resulted in an arrest in cell growth and a dramatic morphological change in both vegetative cells and outgrowing spores. Vegetative cells lacking pbpA and pbpH expression swelled and cell elongation was arrested, leading to the formation of pleiomorphic spherical cells and eventual lysis. In these cells, cell septations were randomly localized, cell walls and septa were thicker than those seen in wild type cells, and the average cell width and volume were larger than those of cells expressing pbpA or pbpH. The vegetative PG had an increased abundance of one unidentified muropeptide. Spores produced by the pbpA pbpH double mutant were able to initiate germination but the transition of the oval-shaped spores to rod-shape cells was blocked. The outgrowing cells were spherical, gradually enlarged, and eventually lysed. Outgrowth of these spores in the presence of xylose led to the formation of helical cells. Thus, PbpH is apparently required for maintenance of cell shape, specifically for cell elongation. PbpH and PBP2a play a redundant role homologous to that of PBP2 in E. coli.

A sequence alignment of the predicted product of pbpI against the microbial protein database demonstrated that the most similar protein in B. subtilis is SpoVD and in E. coli is PBP3. This suggested that PbpI belongs to the group of the genes required for synthesis of the spore or septum PG. PbpI was identified using radio-labeled penicillin and found to run underneath PBP4 on SDS-PAGE. PbpI is therefore renamed PBP4b. Study of a pbpI-lacZ fusion showed that pbpI was expressed predominantly during early sporulation. A putative sigma F recognition site is present in the region upstream of pbpI and studies using mutant strains lacking sporulation-specific sigma factors demonstrated that the expression of pbpI is mainly dependent on sigma factor F. A pbpI single mutant, a pbpI pbpG double mutant, and a pbpI pbpF double mutant were indistinguishable from the wild-type. The sporulation defect of a pbpI pbpF pbpG triple mutant was indistinguishable from that of a pbpF pbpG double mutant. Structure parameters of the forespore PG in a pbpI spoVD strain are similar to that of a spoVD strain. These results indicate that PBP4b plays a unknown redundant role.


Master of Science
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Sartori, Paolo. "The Role of Interfaces in Microfluidic Systems: Oscillating Sessile Droplets and Confined Bacterial Suspensions". Doctoral thesis, Università degli studi di Padova, 2017. http://hdl.handle.net/11577/3423250.

Texto completo
Resumen
This PhD thesis is focused on the role of interfaces that characterize microfluidic systems, such as the free air/liquid interface of drops or the liquid/solid interface of fluids enclosed in microchannels. This work has a twofold character: on one side, we studied the dynamics of sessile drops subject to oscillations of the substrate; on the other, we investigated the spatial concentration distribution of suspensions of motile bacteria, as a model system for active collids, tuned by geometrical confinement. Dynamics of sessile drops. The first topic is related to the field of wetting phenomena and open microfluidics, which deals with the behaviour of drops, typically in the nano-/microliter range, deposited on open surfaces. At such length scale, these systems are dominated by capillarity and may give rise to unexpected effects, not commonly observed at the larger scale we are used to. Our studies aim to the achievement of an active control on the motion and shape of drops by means of vibration of the substrates, for chemical or biological applications. In particular, the motion of liquid drops on an inclined substrate subject to vertical harmonic oscillations have been considered. Typically, small droplets on inclined surfaces remain pinned because of contact angle hysteresis. When vertical oscillations are applied the droplets unpin and slide down. Surprisingly, for sufficiently large oscillation amplitude the droplets move upward against gravity. The systematical investigation of the response of drops on varying peak acceleration and frequency of oscillations, for fluids with different surface tensions and viscosity, allowed the control of the unidimensional motion along the substrate. Then, we have studied the interfacial morphologies of water drops confined on the hydrophilic top face of rectangular posts of width 0.5 mm and various length. For small volumes, the liquid film adopts the shape of a homogeneous filament with a uniform cross section close to a circular segment. For larger volumes, the water interface forms a central bulge, which grows with the volume. In the case of posts longer than a characteristic length, the transition between the two film shapes on varying the volume is discontinuous and exhibits the bistability of the two morphologic states associated with a hysteresis phenomenon. Vertically oscillating the post, with fixed water volume corresponding to the bistability, at certain frequencies induces an irreversible transition from the filament to the bulge state. Self-propelled particles under geometrical confinement. The second topic deals with the behaviour of active fluids, i.e. self-propelled colloid suspensions which are intrinsically out of equilibrium systems (Active Matter). In particular, in the presence of geometrical structures, such systems behave in a very different way with respect to equilibrium Browinan colloids. We have analyzed the role of different swimming patterns on the concentration distribution of bacterial suspensions confined between two flat walls, by considering wild-type E. coli and P. aeruginosa, which perform Run and Tumble and Run and Reverse patterns, respectively. The concentration profiles have been obtained by counting motile bacteria at different distances from the bottom wall. In agreement with previous studies, an accumulation of motile bacteria close to the walls was observed. Different fraction of motile bacteria and different wall separations, ranging from 100 μm to 250 μm, have been tested. The concentration profiles resulted to be independent on the walls separation and on the different kind of motility and to scale with the motile fraction. These results are confirmed by numerical simulations, based on a collection of self-propelled rod-like particles interacting only through steric interactions.
Questa tesi di dottorato prende in esame il ruolo delle interfacce che caratterizzano i sistemi microfluidici, come ad esempio l’interfaccia libera aria/acqua delle gocce o l’interfaccia liquido/solido di fluidi racchiusi in microcanali. Questo lavoro ha un duplice carattere: da una parte, abbiamo studiato la dinamica di gocce sessili soggette ad oscillazioni del substrato; dall’altra, abbiamo investigato come la distribuzione spaziale della concentrazione in sospensioni batteriche, prese come sistema modello per colloidi attivi, venga alterata da un confinamento geometrico. Dinamica di gocce sessili. Il primo argomento rientra nel campo dei fenomeni di bagnabilità e della microfluidica aperta, che tratta il comportamento di gocce, tipicamente nel range dei nano- /microlitri, depositate su superfici aperte. A tali scale di lunghezza, questi sistemi sono dominati dalla capillarità a possono produrre effetti inaspettati che non vengono comunemente osservati alle scale macroscopiche a cui siamo abituati. I nostri studi sono volti al raggiungimento del controllo attivo del moto e della forma delle gocce per mezzo di vibrazioni del substrato, con applicazioni dalla Chimica alla Biologia. In particolare, è stato considerato il moto di gocce su in substrato inclinato sottoposto ad oscillazioni armoniche verticali. Normalmente, su superfici inclinate le goccioline rimangono ferme a causa dell’isteresi dell’angolo di contatto. Quando vengono applicate oscillazioni verticali le goccioline si sbloccano e scivolano giù. Sorprendentemente, per ampiezze di oscillazioni sufficientemente grandi le goccioline si muovono verso l’atro contro la forza di gravità. Un’analisi della risposta delle gocce al variare dell’accelerazione di picco e della frequenza di oscillazione, prendendo in esame fluidi con diverse tensioni superficiali e viscosità, ha permesso il controllo del moto unidimensionale lungo il pianoinclinato. Inoltre, abbiamo studiato le morfologie interfacciali di gocce d’acqua confinate sulla faccia superiore idrofilica di post rettangolari con larghezza 0.5 mm e varie lunghezze. Per piccoli volumi, il film liquido prende la forma di un filamento omogeneo con una cross-section uniforme simile ad un segmento circolare. Per volumi più grandi, l’interfaccia acqua/aria forma un rigonfiamento centrale, che cresce con il volume. Nel caso di post più lunghi di una lunghezza caratteristica, la transizione tra le due forme al variare del volume discontinua e mostra la bistabilità dei due stati morfologici associata ad un fenomeno di isteresi. Applicando al post, con volume d’acqua fissato corrispondente alla bistabilità, vibrazioni verticali con determinate frequenze si più indurre una transizione irreversibile dallo stato di filamento omogeneo a quello rigonfiato. Particelle auto-propulse sotto confinamento geometrico. Il secondo argomento riguarda il comportamento di fluidi attivi, cioè sospensioni di colloidi auto-propulsi che costituiscono sistemi intrinsecamente fuori equilibrio (Materia Attiva). In particolare, in presenza di strutture geometriche, tali sistemi si comportano in modo molto differente rispetto a colloidi Browniani all’equilibrio. Abbiamo analizzato il ruolo di diversi schemi di motilità sulla distribuzione di concentrazione di sospensioni batteriche confinate tra due pareti solide. considerando E. coli a P. aeruginosa wild-type, che si muovono secondo gli schemi Run and Tumble e Run and Reverse, rispettivamente. I profili di concentrazione sono tati ottenuti contando i batteri motili a diverse distanze dalle pareti. In accordo con studi precedenti, si osservato un accumulo di batteri motili in prossimit delle pareti. Sono state testate diverse frazioni di batteri motili e diverse distanze di separazione tra le pareti, nel range tra 100μm e 250 μm. I profili di concentrazione risultano indipendenti dalla distanza tra le pareti e dai differenti schemi di motilità e scalano con la frazione di batteri motili. Questi risultati sono confermati da simulazioni numeriche, basate su una collezione di particelle allungate auto-propulse che interagiscono solo tramite interazioni steriche.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Huff, Jason. "Functional determinants of the porin MspA and its role in permeabilizing mycobacterial outer membranes". Thesis, Birmingham, Ala. : University of Alabama at Birmingham, 2010. https://www.mhsl.uab.edu/dt/2010p/huff.pdf.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Beri, Hina. "Chemical and molecular analysis of the cell wall composition of tomato (Lycopersicon esculentum) in relation to resistance to Ralstonia solanacearum, causal agent of bacterial wilt". [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=976699133.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Golanowska, Malgorzata. "Characterization of Dickeya solani strains and identification of bacterial and plant signals involved in induction of virulence". Thesis, Lyon, INSA, 2015. http://www.theses.fr/2015ISAL0087/document.

Texto completo
Resumen
Les bactéries pectinolytiques des genres Pectobacterium (ancien nom Erwinia carotovora) et Dickeya (ancien nom Erwinia chrysanthemi) sont les agents des maladies de la jambe noire et de la pourriture molle. Ils provoquent des dommages aux cultures et des pertes économiques élevées. Les pertes causées par les bactéries pectinolytiques sont évaluées à environ 2 à 10% du rendement de pommes de terre, en fonction de l'année. En 2009, les pertes en pommes de terre en Europe ont été estimées à 250 millions d'euros. Au cours des dernières années, des souches de Dickeya ont été de plus en plus souvent isolées de plantes malades en Pologne, en France et d'autres pays européens. Le genre Dickeya est un groupe très diversifié, qui, selon la nomenclature actuelle contient sept espèces: D. aquatica, D. chrysanthemi, D. dadantii, D. dianthicola, D. paradisiaca, D. solani et D. zeae. Les résultats récents, obtenus dans différents pays européens, indiquent qu'un nouveau groupe de souches de Dickeya peut infecter efficacement les plantes de pomme de terre et causer des symptômes de la maladie en climat tempéré. Les souches de D. solani sont considérés comme plus agressives que les autres bactéries causant la jambe noire. Une analyse préliminaire a suggéré qu’elles ont besoin de plus faibles températures optimales pour le développement de la maladie ainsi que de niveaux d'inoculum inférieurs pour la propagation de l'infection. Elles semblent avoir une plus forte capacité à coloniser les racines de plantes de pomme de terre et à se propager à travers le système vasculaire de la plante. Les souches de D. solani produisent une large gamme d’enzymes dégradant de la paroi cellulaire végétale, qui sont les principaux facteurs de virulence. Les objectifs de l'étude étaient les suivants: 1) la caractérisation phénotypique et génotypique des souches de D. solani isolées dans des pays ayant des conditions climatiques différentes: Pologne, Finlande et Israël, 2) l'étude de l’influence d'extraits de pomme de terre sur l'expression de quelques gènes sélectionnés de D. solani: pelD, pelL, tssk, lfaA, 3) la génomique comparative de dix souches de D. solani, basée sur 4 génomes séquencés pour cette étude et 6 séquences génomiques disponibles dans la base de données GenBank. En conclusion, toutes les études génomiques ont montré que les souches de D. solani forment un groupe très homogène. Cependant, leur analyse phénotypique révèle une certaine variabilité entre les souches provenant de différentes conditions climatiques. La raison des variations observées dans les traits phénotypiques peut être liée à la régulation de l'expression des gènes codant les facteurs de virulence qui peuvent être influencés par la température, le pH, la carence en fer ou en oxygène et la disponibilité en azote, ainsi que par la présence de composés spécifiques des tissus végétaux
Dickeya solani is a species consisting of newly emerged plant pathogenic bacteria that cause blackleg and soft rot diseases. They are responsible for great damages to potato plantations in most of European countries. D. solani strains produce a wide range of plant cell-wall degrading enzymes which are the main virulence factors. The aims of the study were: 1) phenotypic and genotypic characterizations of the D. solani strains isolated in countries with different climatic conditions: Poland, Finland and Israel, 2) study of the potato tuber extract influence on the expression of a few selected D. solani genes : pelD, pelL, tssK, lfaA,3) comparative genomics of ten D. solani strains, performed on 4 genomes sequenced for this study and 6 genome sequences available in the GenBank databases. The results showed that the strains from different climatic conditions have identical profiles in rep-PCR (with three different primers) and in Restriction Fragments Lenght Polymorphism-Pulse Field Gel Electrophoresis. However, they do differ phenotypically, especially in the activity of plant cell-wall degrading enzymes. Polish strains have higher activities of pectinolytic, cellulolytic and proteolytic enzymes than Finnish and Israeli strains. D. solani mutants in the pelD, pelL, tssK, lfaA genes were constructed by site-specific mutagenesis. The highest induction by plant extracts was observed for the lfaA gene. The expression of pelL is also induced by plant derived signal(s), but not that of pelD and tssK. Comparative genomics helped to elucidate the D. solani pangenome. The 10 D. solani strains genomes are coding for a total of 41 947 proteins which were grouped into 5 045 Orthologous Groups, 3 809 belonging to the core genome, 413 to the accessory genome and 823 to the unique genome. Some pathogenicity-related genes as well as their regulators were selected on the basis of the knowledge available for D. dadantii 3937, the most studied Dickeya strain, which belongs to a closely related species. Analysis of their protein sequence showed no difference in the sequence of those genes within the 10 genomes. All the genetic studies proved that D. solani strains form a very homogenous group. On the other hand, the phenotypic analysis showed some variability among strains from different climatic conditions. The observed variations in the phenotypic traits can results from a different regulation of the expression of the genes encoding virulence factors which are influenced by temperature, pH, iron deprivation, oxygen and nitrogen availability, as well as by the presence of plant compounds
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Megrian, Nuñez Daniela. "Phylogenomic approaches to uncover the diversity and evolution of the bacterial cell envelope". Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS349.

Texto completo
Resumen
L’enveloppe bactérienne est l’une des structures cellulaires les plus anciennes et les plus fondamentales. Toutefois, de nombreux aspects concernant sa diversité et son histoire évolutive sont encore inconnus. Dans cette thèse, j’ai profité du nombre croissant de génomes disponibles dans les bases de données publiques, afin de mener une analyse de phylogénomique et de génomique comparative à une large échelle évolutive. Les deux objectifs de ce travail doctoral étaient (i) d’identifier de nouvelles lignées didermes au sein des Firmicutes pour éclairer la transition monoderme/diderme, et (ii) d’élucider l’histoire évolutive de l’enveloppe cellulaire chez les bactéries et d’en déduire la nature chez le LBCA.En résumé, les résultats que j'ai obtenus au cours de cette thèse fournissent une avancée significative dans notre compréhension de la diversité et de l'évolution de l'enveloppe cellulaire, et sur l'une des transitions majeures de l'histoire des bactéries, celle entre les monodermes et les didermes
The bacterial envelope is one of the oldest and most fundamental cellular structures. Yet, many aspects of its diversity and evolutionary history are unknown. In this thesis I have taken advantage of the large available genomic data to investigate the issue through a large-scale phylogenomic and comparative genomic analyses at the level of Bacteria. The two goals of this doctoral work were (i) to identify putative new diderm lineages in the Firmicutes to illuminate the monoderm/diderm transition, and (ii) to elucidate the evolutionary history of the cell envelope in Bacteria and infer its nature in the LBCA. To sum up, the results I obtained during this thesis provide a timely and significant advancement to our understanding of the diversity and evolution of the cell envelope, and on one of the major transitions in the history of Bacteria, that between monoderms and diderms
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Merget, Benjamin [Verfasser] y Christoph [Gutachter] Sotriffer. "Computational methods for assessing drug-target residence times in bacterial enoyl-ACP reductases and predicting small-molecule permeability for the \(Mycobacterium\) \(tuberculosis\) cell wall / Benjamin Merget ; Gutachter: Christoph Sotriffer". Würzburg : Universität Würzburg, 2016. http://d-nb.info/1125884541/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Yao, Zhizhong. "Using Live Cell Imaging to Probe Biogenesis of the Gram-Negative Cell Envelope". Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10230.

Texto completo
Resumen
In Gram-negative bacteria, the three-layered cell envelope, including the cell wall, outer and inner membranes, is essential for cell survival in the changing, and often hostile environments. Conserved in all prokaryotes, the cell wall is incredibly thin, yet it functions to prevent osmotic lysis in diluted conditions. Based on observations obtained by genetic and chemical perturbations, time-lapse live cell imaging, quantitative imaging and statistical analysis, Part I of this dissertation explores the molecular and physical events leading to cell lysis induced by division-specific beta-lactams. We found that such lysis requires the complete assembly of all essential components of the cell division apparatus and the subsequent recruitment of hydrolytic amidases. We propose that division-specific beta-lactams lyze cells by inhibiting FtsI (PBP3) without perturbing the normal assembly of the cell division machinery and the consequent activation of cell wall hydrolases. On the other hand, we demonstrated that cell lysis by beta-lactams proceeds through four physical phases: elongation, bulge formation, bulge stagnation and lysis. Bulge formation dynamics is determined by the specific perturbation of the cell wall and outer membrane plays an independent role in stabilizing the bulge once it is formed. The stabilized bulge delays lysis, and allows escape and recovery upon drug removal. Asymmetrical in structure and unique to Gram-negative bacteria, outer membrane prevents the passage of many hydrophobic, toxic compounds. Together with inner membrane and the cell wall, three layers of the Gram-negative cell envelope must be well coordinated throughout the cell cycle to allow elongation and division. Part II of this dissertation explores the essentiality of the LPS layer, the outer leaflet of the outer membrane. Using a conditional mutant severely defective in LPS transport, we found that mutations in the initiation phase of fatty acid synthesis suppress cells defective in LPS transport. The suppressor cells are remarkably small with a 70% reduction in cell volume and a 50 % reduction in growth rate. They are also blind to nutrient excess with respect to cell size control. We propose a model where fatty acid synthesis regulates cell size in response to nutrient availability, thereby influencing growth rate.
Chemistry and Chemical Biology
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Robinson, Margaret Reybold. "I: Enhanced specificity for aromatics using 2E mass spectrometry II: Evaluation of the proteolytic activity of cathepsin G and elastase upon bacterial cell wall III: Hydrolysis studies of an isocoumar". Diss., Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/30968.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Dorling, Jack. "Peptidoglycan recycling in the Gram-positive bacterium Staphylococcus aureus and its role in host-pathogen interaction". Thesis, University of Oxford, 2018. http://ora.ox.ac.uk/objects/uuid:3fc4f926-296d-43a1-bb45-af9f37a87d8d.

Texto completo
Resumen
Bacteria are enclosed by a peptidoglycan sacculus, an exoskeleton-like polymer composed of glycan strands cross-linked by short peptides. The sacculus surrounds the cell in a closed bag-like structure and forms the main structural component of the bacterial cell wall. As bacteria grow and divide, cell wall remodelling by peptidoglycan hydrolases results in the release of peptidoglycan fragments from the sacculus. In Gram-negative bacteria, these fragments are efficiently trapped and recycled. Gram-positive bacteria however shed large quantities of peptidoglycan fragments into the environment. For nearly five decades, Gram-positive bacteria were thus assumed not to recycle peptidoglycan and this process has remained enigmatic until recently. In this thesis, the occurrence and physiological role of peptidoglycan recycling in the Gram-positive pathogen Staphylococcus aureus was investigated. S. aureus is an important pathogen, and is becoming increasingly resistant to many antibiotics. Through bioinformatic and experimental means it was determined that S. aureus may potentially recycle components of peptidoglycan and novel peptidoglycan recycling components were identified and characterised. Though disruption of putative peptidoglycan recycling in S. aureus appears not affect growth or gross morphology of this bacterium, potential roles for peptidoglycan recycling in cell wall homeostasis and in virulence were identified. This is to my knowledge the first demonstration of a potential role of peptidoglycan recycling in either of these aspects of bacterial physiology in any Gram-positive bacterium. This is an important step forward in understanding the basic biology of Gram-positive bacteria, and in understanding the mechanisms of virulence in S. aureus. Future study of this process in S. aureus and other Gram-positive bacteria promises to reveal yet further facets of this process and its functions, potentially leading to the identification of novel therapeutic approaches to combat infections.
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Gally, David Lawrence. "Cell wall assembly in gram positive bacteria". Thesis, University of Newcastle Upon Tyne, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.287465.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Umesiri, Francis E. "Synthesis of Carbohydrate-based Inhibitors of Antigen 85". University of Toledo / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1282006047.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Braithwaite, Kerynne Lindsay. "Novel plant cell wall hydrolases from Pseudomonas fluorescens subspecies cellulosa". Thesis, University of Newcastle Upon Tyne, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.294928.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Haag, Andreas F. "Investigating the role of bacterial cell envelope components and host peptides in the Sinorhizobium meliloti-legume symbiosis". Thesis, University of Aberdeen, 2011. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=183674.

Texto completo
Resumen
Sinorhizobium meliloti forms a symbiosis with Medicago species of legumes. Within the legume root nodules, S. meliloti differentiates into a bacteroid, which fixes atmospheric nitrogen into ammonia for the legume. The legume produces hundreds of nodule-specific cysteine-rich (NCR) peptides, which mediate bacteroid differentiation. The S. meliloti BacA protein was the first bacterial factor identified to be essential for bacteroid development. BacA sensitises S. meliloti to certain antimicrobial peptides and influences the modification of the bacterial lipopolysaccharide (LPS) with a very-long-chain fatty acid (VLCFA). Therefore, it is thought that either the peptide uptake function or the role of BacA in LPS VLCFA decoration could be essential for survival of S. meliloti within the legume. In this PhD project, a role for BacA in the response of S. meliloti towards NCR peptides was investigated. It was determined that BacA protects S. meliloti from NCR-induced cell death. Furthermore, it was found that the structure and composition of the LPS plays a key role in the response of S. meliloti to NCR peptides. It was also shown that the peptide uptake function of BacA was conserved among different rhizobia. The role and biosynthesis of the LPS VLCFA in bacteroid development was also explored. It was determined that the acyltransferase but not the acyl-carrier-protein, was essential for the biosynthesis of VLCFA modified LPS in planta. Six genes, located in a gene cluster were proposed to be involved in the LPS VLCFA biosynthesis in rhizobia and my research found that this was the case. The outcome of this research has provided important insights into the mechanism of prolonged bacterial-host infections and the biosynthesis of unusual lipids.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

WOLFE, ALAN JEFFREY. "THE RELATIONSHIP OF BACILLUS SUBTILIS PHYSIOLOGY AND HELICAL STRUCTURE AND ORGANIZATION (MACROFIBER, CELL SURFACE, HELIX HAND INVERSION)". Diss., The University of Arizona, 1985. http://hdl.handle.net/10150/187939.

Texto completo
Resumen
Helix hand inversion exhibited by Bacillus subtilis macrofibers is induced by changes in culture medium composition. The kinetics of this inversion are compared to those of temperature-induced inversions. D-alanine evokes a similar inversion process. The role of left-twist proteins(s), the existence of "memory", and the asymmetry of left to right versus right to left kinetics are confirmed within the context of these inversion regimes. Initiation time of right to left inversions is correlated to degree of pre-shift twist. Evidence is presented suggesting effective twist of the wall is defined by (1) the average of that twist conformation inserted prior to a shift in culture conditions and that of wall inserted following the shift and (2) the location of left-handed material within the wall. A constant 50 minute delay is observed before initiation of left to right inversions, irregardless of twist. Evidence is presented for a protein in the left to right inversion process. A classification system of macrofiber phenotypes based upon hand and degree of structural organization has been established. Three major classes are identified. Subclasses are shown to be distinguishable. Isotwist phenotypes of seven strains are defined upon a matrix of temperature and medium composition. These plots reveal a fundamental pattern of hand and organization that is present in each of the strains studied. The polarity of the four axes, the range of attainable twist conformations, and the existence of a right-hand maximum in the 12.5% SPl domain remain virtually constant. Major variations include extent of a disorganized band and/or the shifting of conformational range either left or right. Several mutants were transformed into A734, a strain that produces the tightest structures at all four matrix corners. Multiple mutations are responsible for the phenotypes of several strains. Evidence is presented for single genes that express as extreme left-handedness and stress at high temperature, swelling and stress in TB at high temperature, and reduction in structural organization produced in high TB content at low temperature.
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

McMahon, Stephen Andrew. "Protein-carbohydrate recognition". Thesis, University of St Andrews, 1999. http://hdl.handle.net/10023/14045.

Texto completo
Resumen
Protein-carbohydrate recognition is an important target for inhibitor development. Improved inhibitor design requires a fundamental molecular basis of these interactions. This thesis describes the preliminary structural studies on three carbohydrate processing enzymes, UDP-galactopyranose mutase, alpha-D-glucose-1-phosphate thymidylyltransferase and TDP-glucose 4,6-dehydratase. These enzymes are found in important human pathogens such as Mycobacterium tuberculosis and Salmonella typhimurium. The major focus of the thesis has been on UDP-galactopyranose mutase, the enzyme responsible for catalysing synthesis of the thermodynamically unfavourable 5 membered ring form of galactose, UDP-galactofuranose from the thermodynamically favoured 6 membered ring form, UDP-galactopyranose. UDP-galactofuranose plays a key role in mycobacterial cell walls. This thesis also describes work with concanavalin A. This legume lectin is an invaluable model for the study of protein-carbohydrate interactions. Two concanavalin A complexes are discussed. Both structures clear up misunderstandings in the literature and provide an insight into designing enzyme inhibitors.
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Torres, Marco Tulio Rincon. "Cellulosome organisation of plant cell wall degrading enzymes in Ruminococcus flavefaciens 17". Thesis, University of Aberdeen, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.327013.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Theves, Matthias. "Bacterial motility and growth in open and confined environments". Phd thesis, Universität Potsdam, 2013. http://opus.kobv.de/ubp/volltexte/2014/7031/.

Texto completo
Resumen
In the presence of a solid-liquid or liquid-air interface, bacteria can choose between a planktonic and a sessile lifestyle. Depending on environmental conditions, cells swimming in close proximity to the interface can irreversibly attach to the surface and grow into three-dimensional aggregates where the majority of cells is sessile and embedded in an extracellular polymer matrix (biofilm). We used microfluidic tools and time lapse microscopy to perform experiments with the polarly flagellated soil bacterium Pseudomonas putida (P. putida), a bacterial species that is able to form biofilms. We analyzed individual trajectories of swimming cells, both in the bulk fluid and in close proximity to a glass-liquid interface. Additionally, surface related growth during the early phase of biofilm formation was investigated. In the bulk fluid, P.putida shows a typical bacterial swimming pattern of alternating periods of persistent displacement along a line (runs) and fast reorientation events (turns) and cells swim with an average speed around 24 micrometer per second. We found that the distribution of turning angles is bimodal with a dominating peak around 180 degrees. In approximately six out of ten turning events, the cell reverses its swimming direction. In addition, our analysis revealed that upon a reversal, the cell systematically changes its swimming speed by a factor of two on average. Based on the experimentally observed values of mean runtime and rotational diffusion, we presented a model to describe the spreading of a population of cells by a run-reverse random walker with alternating speeds. We successfully recover the mean square displacement and, by an extended version of the model, also the negative dip in the directional autocorrelation function as observed in the experiments. The analytical solution of the model demonstrates that alternating speeds enhance a cells ability to explore its environment as compared to a bacterium moving at a constant intermediate speed. As compared to the bulk fluid, for cells swimming near a solid boundary we observed an increase in swimming speed at distances below d= 5 micrometer and an increase in average angular velocity at distances below d= 4 micrometer. While the average speed was maximal with an increase around 15% at a distance of d= 3 micrometer, the angular velocity was highest in closest proximity to the boundary at d=1 micrometer with an increase around 90% as compared to the bulk fluid. To investigate the swimming behavior in a confinement between two solid boundaries, we developed an experimental setup to acquire three-dimensional trajectories using a piezo driven objective mount coupled to a high speed camera. Results on speed and angular velocity were consistent with motility statistics in the presence of a single boundary. Additionally, an analysis of the probability density revealed that a majority of cells accumulated near the upper and lower boundaries of the microchannel. The increase in angular velocity is consistent with previous studies, where bacteria near a solid boundary were shown to swim on circular trajectories, an effect which can be attributed to a wall induced torque. The increase in speed at a distance of several times the size of the cell body, however, cannot be explained by existing theories which either consider the drag increase on cell body and flagellum near a boundary (resistive force theory) or model the swimming microorganism by a multipole expansion to account for the flow field interaction between cell and boundary. An accumulation of swimming bacteria near solid boundaries has been observed in similar experiments. Our results confirm that collisions with the surface play an important role and hydrodynamic interactions alone cannot explain the steady-state accumulation of cells near the channel walls. Furthermore, we monitored the number growth of cells in the microchannel under medium rich conditions. We observed that, after a lag time, initially isolated cells at the surface started to grow by division into colonies of increasing size, while coexisting with a comparable smaller number of swimming cells. After 5:50 hours, we observed a sudden jump in the number of swimming cells, which was accompanied by a breakup of bigger clusters on the surface. After approximately 30 minutes where planktonic cells dominated in the microchannel, individual swimming cells reattached to the surface. We interpret this process as an emigration and recolonization event. A number of complementary experiments were performed to investigate the influence of collective effects or a depletion of the growth medium on the transition. Similar to earlier observations on another bacterium from the same family we found that the release of cells to the swimming phase is most likely the result of an individual adaption process, where syntheses of proteins for flagellar motility are upregulated after a number of division cycles at the surface.
Bakterien sind einzellige Mikroorganismen, die sich in flüssigem Medium mit Hilfe von rotierenden Flagellen, länglichen Fasern aus Proteinen, schwimmend fortbewegen. In Gegenwart einer Grenzfläche und unter günstigen Umweltbedingungen siedeln sich Bakterien an der Oberfläche an und gehen in eine sesshafte Wachstumsphase über. Die Wachstumsphase an der Oberfläche ist gekennzeichnet durch das Absondern von klebrigen, nährstoffreichen extrazellulären Substanzen, welche die Verbindung der Bakterien untereinander und mit der Oberfläche verstärken. Die entstehenden Aggregate aus extrazellulärer Matrix und Bakterien werden als Biofilm bezeichnet. In der vorliegenden Arbeit untersuchten wir ein Bodenbakterium, Pseudomonas putida (P. putida), welches in wässriger Umgebung an festen Oberflächen Biofilme ausbildet. Wir benutzten photolithographisch hergestellte Mikrokanäle und Hochgeschwindigkeits-Videomikroskopie um die Bewegung schwimmender Zellen in verschiedenen Abständen zu einer Glasoberfläche aufzunehmen. Zusätzlich wurden Daten über das parallel stattfindende Wachstum der sesshaften Zellen an der Oberfläche aufgezeichnet. Die Analyse von Trajektorien frei schwimmender Zellen zeigte, dass sich Liniensegmente, entlang derer sich die Zellen in eine konstante Richtung bewegen, mit scharfen Kehrtwendungen mit einem Winkel von 180 Grad abwechseln. Dabei änderte sich die Schwimmgeschwindigket von einem zum nächsten Segment im Mittel um einen Faktor von 2. Unsere experimentellen Daten waren die Grundlage für ein mathematisches Modell zur Beschreibung der Zellbewegung mit alternierender Geschwindigkeit. Die analytische Lösung des Modells zeigt elegant, dass eine Population von Bakterien, welche zwischen zwei Geschwindigkeiten wechseln, signifikant schneller expandiert als eine Referenzpopulation mit Bakterien konstanter Schwimmgeschwindkeit. Im Vergleich zu frei schwimmenden Bakterien beobachteten wir in der Nähe der Oberfläche eine um 15% erhöhte Schwimmgeschwindigkeit der Zellen und eine um 90 % erhöhte Winkel-geschwindigkeit. Außerdem wurde eine signifikant höhere Zelldichte in der Nähe der Grenzfläche gemessen. Während sich der Anstieg in der Winkelgeschwindigkeit durch ein Drehmoment erklären lässt, welches in Oberflächennähe auf den rotierenden Zellkörper und die rotierenden Flagellen wirkt, kann die Beschleunigung und Akkumulation der Zellen bei dem beobachteten Abstand nicht durch existierende Theorien erklärt werden. Unsere Ergebnisse lassen vermuten, dass neben hydrodynamischen Effekten auch Kollisionen mit der Oberfläche eine wichtige Rolle spielen und sich die Rotationsgeschwindigkeit der Flagellenmotoren in der Nähe einer festen Oberfläche grundsätzlich verändert. Unsere Experimente zum Zellwachstum an Oberflächen zeigten, dass sich etwa sechs Stunden nach Beginn des Experiments größere Kolonien an der Kanaloberfläche auflösen und Zellen für ca. 30 Minuten zurück in die schwimmende Phase wechseln. Ergebnisse von mehreren Vergleichsexperimenten deuten darauf hin, dass dieser Übergang nach einer festen Anzahl von Zellteilungen an der Oberfläche erfolgt und nicht durch den Verbrauch des Wachstumsmediums bedingt wird.
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Ainge, Gary D. y n/a. "The synthesis of phosphatidylinositol mannans and their analogues". University of Otago. Department of Chemistry, 2008. http://adt.otago.ac.nz./public/adt-NZDU20090113.101325.

Texto completo
Resumen
Phosphatidylinositol mannosides (PIMs) isolated from mycobacteria have been identified as an important class of glycolipids that possess significant immune modulating properties. To provide discrete synthetic compounds for biological assay, this thesis describes the syntheses of three PIM molecules, namely dipalmitoyl PIM2 (12), PIM4 (84), and PIM6 (108), and two PIM2 analogues designed for increased stability, PIM2ME (147) and PIM2MA (148). The synthesis of all of these molecules involved mannosylation of 1-O-allyl-3,4,5-tri-O-benzyl-D-myo-inositol (22), which was prepared from methyl α-D-glucopyranoside in 8% yield over 8 steps, using a Ferrier reaction strategy. A common intermediate, 3,4,5-tri-O-benzyl-2,6-di-O-(2,3,4,6-tetra-O-benzyl-α-D-mannopyranosyl)-D-myo-inositol (9), was used for the syntheses of 12, 147, and 148. This compound was prepared by bis-mannosylation of the C-1 and C-6 hydroxyl groups of 22 with 2-O-acetyl-3,4,6-tri-O-benzyl-α-D-mannopyranosyl trichloroacetimidate (63) to give, after protecting group manipulations, the α,α-pseudo-trisaccharide 9 in 37% over 4 steps. The selectivity of the desired α,α-product was found to be increased by the selection of Et₂O as the solvent for the glycosylation reaction. The C-1 hydroxyl group of 9 was coupled to benzyl (1,2-di-O-palmitoyl-sn-glycero)-diisopropylphosphoramidite (28) using 1H-tetrazole. Global debenzylation of the resulting product gave PIM2 (12) in 23% yield over 6 steps from 22. In a similar fashion 9 was coupled to 1-O-hexadeconyl-2-O-hexadecyl-sn-glycero-3-O-benzyl-(N,N-diisopropyl)-phosphoramidite (156), and subsequent deprotection gave PIM2ME (147) in 30% yield over 2 steps from 9. Coupling of 9 with 2-deoxy-1-O-hexadeconyl-2-O-hexadeconylamino-sn-glycero-3-O-benzyl-(N,N-diisopropyl)-phosphoramidite (172) and subsequent deprotection gave PIM2MA (148) in 47% yield over 2 steps from 9. A modified approach was required for the syntheses of PIM4 (84) and PIM6 (108). A selective glycosylation of the C-6 hydroxyl of 22 with an orthogonally protected mannose donor would allow extension of the manno-oligosaccharide in a 2+3 or 4+3 glycosylation strategy required to build the pseudo-pentasaccharide or pseudo-heptasaccharide core of 84 or 108 respectively. Sequential mannosylation of 22, firstly at the more reactive C-6 hydroxyl, with 2-O-acetyl-3,4-di-O-benzyl-6-O-tert-butyldiphenylsilyl-α-D-mannopyranosyl trichloroacetimidate (85), was followed by mannosylation at the C-2 hydroxyl with 63. Removal of the silyl protecting group followed by a 2+3 coupling with the dimannoside donor, 2-O-acetyl-6-O-(2-O-acetyl-3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-3,4-di-O-benzyl-α-D-mannopyranosyl trichloroacetimidate (95), gave a pseudo-pentasaccharide intermediate. Protecting group manipulations followed by coupling of the of the C-1 hydroxyl group of the inositol ring to phosphoramidite 28, and a global debenzylation, gave PIM4 (84) in 6% yield over 9 steps from 22. During the synthesis of PIM6 (108), thioglycosylation chemistry was explored and found to be comparable to reactions with trichloroacetimidate donors. Similar methodology was used for the synthesis of PIM6 (108) as had previously been carried out for the synthesis of PIM4 (84). Mannosylation at the more reactive C-6 hydroxyl of 22 with either phenyl 2-O-benzoyl-3,4-di-O-benzyl-6-O-triisopropylsilyl-1-thio-α-D-mannopyranoside (112) or 2-O-benzoyl-3,4-di-O-benzyl-6-O-triisopropylsilyl-α-D-mannopyranosyl trichloroacetimidate (113), was followed by mannosylation at the C-2 hydroxyl with 63. Removal of the silyl group followed by a 4+3 coupling with either of the tetramannoside donors, phenyl (2-O-benzoyl-3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-(1[to]2)-(3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-(1[to]2)-(3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-(1[to]6)-2-O-benzoyl-3,4-di-O-benzyl-1-thio-α-D-mannopyranoside (109) or (2-O-benzoyl-3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-(1[to]2)- (3,4,6-tri-O-benzyl-α-D-mannopyranosyl)-(1[to]2)-(3,4,6-tri-O-benzyl-α-D-mannopyranosyl-(1[to]6)-2-O-benzoyl-3,4-di-O-benzyl-α-D-marmopyranosyl trichloroacetimidate (131) gave a gave a pseudo-heptasaccharide intermediate. Protecting group manipulations followed by coupling of the of the C-1 hydroxyl group of the inositol ring to phosphoramidite 28, and a global debenzylation, gave PIM6 (108) in 9% yield over 9 steps from 22. To aid characterisation of 108, a sample was deacylated to afford dPIM6 (144) which gave the same spectral data as a sample from a natural source. The compounds PIM2 (12), PIM4 (84), PIM2ME (147), and PIM2MA (148) were assayed for adjuvant activity and were found to have comparable activity to fractions isolated from natural sources. The analogue PIM2ME (147) gave the best results and is currently undergoing further development.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Wahl, Reiner. "Reguläre bakterielle Zellhüllenproteine als biomolekulares Templat". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2003. http://nbn-resolving.de/urn:nbn:de:swb:14-1055925295812-40846.

Texto completo
Resumen
Bacterial cell wall proteins (S-layer) are - due to both the capability to self-assemble into two-dimensional crystals and their distinct chemical and structural properties - suitable for the deposition of metallic particles at their surface . The cluster growth is subject of this thesis. The binding of metal complexes to S-layers of Bacillus sphaericus and Sporosarcina ureae and their subsequent reduction leads to the formation of regularly arranged platinum or palladium cluster arrays on the biomolecular template. A heterogeneous nucleation mechanism is proposed for this process consisting of the binding of metal complexes and their subsequent reduction. The kinetics of the process and the binding of the complexes to the protein are characterized by UV/VIS spectroscopy. This thesis focuses on structural investigations by means of transmission electron microscopy, electron holography, scanning force microscopy, image analysis, and image processing. Preferred cluster-deposition sites are determined by correlation averaging. A more precise determination and quantification is obtained by Multivariate Statistical Analysis. Furthermore a method for the electron beam induced formation of highly-ordered metallic cluster arrays in the transmission electron microscope and a fast screening method for surface layers of Gram-positive bacteria are presented
Bakterielle Zellhüllenproteine (S-Layer) eignen sich durch ihre Fähigkeit zur Selbstassemblierung zu zweidimensionalen Kristallen und durch ihre besonderen chemischen und strukturellen Eigenschaften zur Abscheidung regelmäßiger metallischer Partikel auf ihrer Oberfläche. In dieser Arbeit wird das Clusterwachstum auf S-Layern untersucht. Die Anbindung von Metallkomplexen an S-Layer von Bacillus sphaericus und Sporosarcina ureae und deren Reduktion führt zur Abscheidung periodisch angeordneter metallischer Platin- bzw. Palladiumcluster auf dem Biotemplat. Für diese Clusterbildung wird ein heterogener Keimbildungsmechanismus vorgeschlagen, bestehend aus Komplexanbindung und Reduktion. Die Bestimmung der Prozeßkinetik und die Charakterisierung der Anbindung der Komplexe an das Protein erfolgt mittels UV/VIS-Spektroskopie. Den Schwerpunkt dieser Arbeit bilden strukturelle Untersuchungen mit Hilfe der Transmissionselektronenmikroskopie, der Elektronenholographie, der Rasterkraftmikroskopie und der Bildanalyse und Bildverarbeitung. Durch Korrelationsmittelung werden Strukturinformationen gewonnen, die eine Bestimmung der lateral bevorzugten Clusterpositionen ermöglichen. Für die auf S-Layern erzeugten Clusterarrays wird die Belegung der einzelnen Positionen mittels Multivariater Statistischer Analyse genauer quantifiziert. Außerdem werden eine Methode zur Erzeugung hochgeordneter metallischer Partikelarrays unter dem Einfluß des Elektronenstrahles im Transmissionselektronenmikroskop und eine Methode zum schnellen Test Gram-positiver Bakterienstämme auf die Existenz von S-Layern vorgestellt
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

May, Terry J. "Synthesis and evaluation of inhibitors of cell wall biosynthesis in Mycobacterium tuberculosis". Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/35769/.

Texto completo
Resumen
The emergence of drug-resistant strains of tuberculosis has led to a demand for the development of new antibiotics. One new target is the cell wall biosynthesis enzyme UDP-Galp mutase (UGM), which aids the formation of the bacteria’s characteristic mycolic acid cell wall. LQ10 and LQ6 were discovered through a library screen. The synthesis of LQ10 was achieved along with 4 analogues. Another class of compounds, 2-aminothiazoles, were produced. Thirteen of these compounds were produced and along with the LQ10 analogues, initially gave encouraging results in silico. To test their biological activity, a fluorescent probe was synthesised for use in a high-throughput fluorescence polarization (FP) assay against UDP-Galp Mutase which was expressed from E. coli. The compounds were screened using the fluorescence polarisation assay initially at a concentration of 50 µM, 9 of which demonstrated >70 % inhibition of UGM. Two of which had inhibition greater than 90 %. These preliminary results suggest that some of these compounds are, and can be developed into potent UGM inhibitors. However, it should be noted that these are only single-point results due to limitations in the quantity of UGM available, and that these will need be repeated in triplicate to determine any errors and give more reliable values.
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Clarke, Jonathan H. "Molecular architecture of xylanases from two aerobic soil bacteria". Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321447.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Lou, Hubing. "Structural and functional studies of bacterial outer membrane proteins". Thesis, University of St Andrews, 2010. http://hdl.handle.net/10023/995.

Texto completo
Resumen
This thesis studies two particular bacterial outer membrane proteins called OmpC and Wzi, focusing on their expression, purification, crystallization and X-ray structure determination. A series of four naturally occurring OmpC mutants were isolated from a single patient with an E. coli infection of liver cysts. The isolated E. coli strains progressively exhibited increasing breadth of antibiotic resistance in which OmpC was predicted to take a partial role. We carried out an assay in which a strain of E. coli lacking OmpC was used to express the first (antibiotic sensitive) and the last (antibiotic resistant) of the clinical OmpC mutants and drug permeation assessed. Single channel conductance measurements were carried out and the X-ray structures for all the isolates were determined. Protein stability was assessed. With these data we propose that changes in the transverse electric field, not the pore size, underlie the clinically observed resistance to the antibiotics. This is the first demonstration of this strategy for antibiotic resistance. Wzi is a novel outer membrane protein involved in the biosynthesis and translocation mechanism of the K30 antigen from E. coli. The mechanism is a complicated process that requires several proteins including outer and inner membrane proteins. The protein Wzi was expressed, purified and crystallized. Initial crystals were tested and diffracted to 15Å. After optimization, a crystal diffracting to 2.4Å has been obtained.
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Vasala, A. (Antti). "Characterization of Lactobacillus bacteriophage LL-H genes and proteins having biotechnological interest". Doctoral thesis, University of Oulu, 1998. http://urn.fi/urn:isbn:9514250826.

Texto completo
Resumen
Abstract Two regions of the genome of the Lactobacillus delbrueckii subsp. lactis bacteriophage LL-H were characterized, representing 14 % of the phage genome. The first region of 2497 bp contained genes encoding phage structural proteins and the second region of 2498 bp genes involved in lytic functions. The nucleotide sequences of the major capsid protein gene g34, a putative capsid morphogenesis gene (ORF178A), the gene mur encoding phage cell wall hydrolase (lysin), the gene hol (ORF107) encoding the cell membrane permeabilizing phage holin, and six other genes with unknown function were found. Identification of these genes was performed by amino acid sequencing of their encoded proteins (genes g34 and mur), by their physiological effect on E. coli (genes hol and mur), by sequence comparison (genes mur, hol, ORF178A), and by biochemical analysis of their encoded purified protein (gene mur). A promoter for the capsid protein encoding gene cluster was determined by primer extension method. A purification method suitable for large scale processing (cation exchange chromatography by expanded bed adsorption method) was developed for the phage LL-H lysin protein Mur. Purified Mur was biochemically determined as a N-acetylmuramidase, which was effective on cell walls of Lb. delbrueckii, Lb. helveticus, Lb. acidophilus and Pediococcus damnosus. Some biotechnological applications for the lysis genes hol and mur or the purified protein Mur are suggested. Mur digests E. coli cell walls inefficiently, but could still be used for lysis of E. coli. Coexpression of the phage LL-H lysin and holin genes yielded to lysis of the E. coli host only at low culture densities. Therefore, some chemicals were tested for their ability to trigger lysis of E. coli cells overexpressing the phage LL-H gene mur. Thymol was found to mimic the physiological effects of the phage holin in a bacterial growth state independent manner. An efficient lysis method utilizing intracellular production of Mur and triggering the lysis with thymol was developed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Chang, Po-Hsun. "Characterization of the Outer Membrane of Treponema Pallidum Subsp. Pallidum by Binding Studies Using Antibodies, Complement, and Host Serum Proteins". Thesis, University of North Texas, 1989. https://digital.library.unt.edu/ark:/67531/metadc798468/.

Texto completo
Resumen
The major goal of this study was to achieve sustained cultivation of virulent T. pallidum in vitro. The putatuive binding of host proteins to the outer membrane (OM) of intact, virulent T. pallidum subsp. pallidum has been investigated. A major breakthrough was the development of a filtration assay, usinglow protein-binding membrane filters, for the measurement of substances bound to or incorporated into th eOM of T. pallidum. This avoided the conventional manipulations which can damage the fragile OM of T. pallidum. Using this filtration assay, studies on the binding of host serum proteins demonstrated that intact treponemes did not bind host proteins as previously reported. It also indicated that previous studies were probably performed with damaged by this research. The studies on the binding of polyclonal and monoclonal antibodies to intact and detergent treated treponemes provided evidence of the low level binding of antibody to intact treponemes which was greatly enhanced but the removal of the outer membrane with 0.1% Triton X. This research research corroborated that of others which suggests that the outer membrane of T. pallidum contains very little protein or surface exposed antigen.
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Huang, Hexian. "Regulations of export and chain length of extracellular bacterial polysaccharides". Thesis, University of St Andrews, 2013. http://hdl.handle.net/10023/4441.

Texto completo
Resumen
Many Gram-positive and Gram-negative bacteria produce an additional thick layer of carbohydrate polymers on the cell wall surface. These capsules (capsular polysaccharides; CPS) play critical roles in interactions between bacteria and their environments (Whitfield, 2006). This is especially important in infection processes since for both Gram-negative and Gram-positive pathogens CPS is the point of first contact with the host immune system (Whitfield, 2006). However, the details of CPS biosynthesis and assembly mechanisms are still unclear. Therefore, we embarked on structural and kinetic studies of the proteins Wzc, Wza and Wzb/ Cps4B from the Wzy-dependent pathway, as well as the protein WbdD from the ATP-binding cassette (ABC) transporter dependent system. Full-length Wzc failed to crystallise due to the presence of large disordered regions and the overall difficulty of membrane protein crystallisation. A truncated version of Wzc (1-480) without the C-terminal tyrosine kinase domain was crystallised and diffracted to 15 Å in house. A previous study suggested Wza and Wzc form a functional complex (Whitfield, 2006), so Wza was also studied. Since the full-length Wza structure is available (C. Dong et al., 2006), Pulsed electron–electron double resonance spectroscopy (PELDOR) was used to study the conformational change. The PELDOR spectroscopy distance fingerprint of Wza was determined. These data also confirmed that PELDOR is a powerful tool to study large, highly symmetrical membrane proteins and can be used to study other complex membrane protein systems, such as ion channels or transporters. The crystal structure of Wzb the cognate phosphatase of Wzc was determined to 2.2 Å. Also Cps4B, which is a functional homologue of Wzb but has a completely unrelated sequence, was crystallised in two crystal forms. Form I and II Cps4B crystals diffracted to 2.8 Å and 1.9 Å resolution in house, respectively. The full-length WbdD failed to crystallise due to the presence of large disordered regions. Therefore, a shorter construct, WbdD₅₅₆ (1-556) was cloned and crystallised. The structure was determined to 2.2 Å. WbdD is a bifunctional enzyme consisting of a methyltransferase (MTase) and a kinase domain. In order to better understand the function of this protein, a variety of techniques were used, such as the ADP-Glo kinase assay, Nuclear magnetic resonance (NMR) spectroscopy, small angle X-ray scattering (SAXS) and X-ray crystallography. The various findings in the current projects provide meaningful insights towards a better understanding of the CPS biosynthesis and assembly mechanisms, which may contribute to a more intensive study identifying inhibitors and beginning to unravel the mechanism of chain length regulation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Pinheiro, Benedita Andrade. "Novel insight into the mechanism of cellulosome assembly and plant cell wall hydrolysis in anaerobic bacteria". Doctoral thesis, Universidade Técnica de Lisboa. Faculdade de Medicina Veterinária, 2010. http://hdl.handle.net/10400.5/1742.

Texto completo
Resumen
Tese de Doutoramento em Ciência e Tecnologia Animal
Cellulosomes are one of nature’s most elaborate and highly efficient nanomachines. These cell bound multi-enzyme complexes orchestrate the deconstruction of cellulose and hemicellulose, two of the most abundant polymers on earth, thus playing a major role in carbon turnover. Integration of cellulosomal components occurs via highly ordered protein:protein interactions between cohesins and dockerins, whose specificities allow the precise incorporation of cellulases and hemicellulases onto a molecular scaffold. Clostridium thermocellum and C. cellulolyticum cellulosomes have been extensively characterized and constitute the paradigm for the organization of cellulases and hemicellulases in multi-enzyme complexes by thermophilic and mesophilic anaerobic bacteria, respectively. The recent sequencing of C. thermocellum and C. cellulolyticum genomes allowed the identification of the complete set of cohesins, dockerins and cellulosomal domains encoded by these bacteria. Here, several unresolved issues concerning cohesin-dockerin specificity, cellulosome assembly and the role of cellulosomal catalytic components in plant cell wall hydrolysis will be explored. The ligand specificities of some newly identified C. thermocellum cohesin and dockerin domains were described (Chapter 2). A novel cell-bound protein, termed OlpC, which contains a type I cohesin domain was discovered in C. thermocellum. A restricted set of dockerins were shown to interact, primarily, with OlpC. All the remaining dockerin containing polypeptides expressed by C. thermocellum are directed to cellulosomes. Significantly, the structure of two C. cellulolyticum cohesin-dockerin complexes revealed that, as it was previously reported for C. thermocellum, mesophilic dockerins also express a dual binding mode for cohesins (Chapter 3). Initial crystallization studies with the two N-terminal domains of C. thermocellum cellulosomal xylanase Xyn10B anticipate the elucidation of its 3D structure, which may provide insightful data concerning the function of this enzyme in plant cell wall hydrolysis (Chapter 4). Finally, a cellulosomal family 2 CE (CtCE2), which grafts a second discrete non-catalytic binding functionality into its active site, was characterized (Chapter 5). CtCE2 provides a rare example of “gene sharing” where the introduction of a second functionality into the active site of an enzyme does not compromise the original activity of the biocatalyst.
RESUMO - Nova perspectiva no mecanismo de integração do celulossoma e na degradação da parede celular vegetal por bactérias anaeróbias - Os celulossomas são um dos mais intricados e eficientes complexos multi-enzimáticos existentes na Natureza. Estes complexos, que se encontram ligados à parede celular bacteriana, desempenham um papel importante na degradação da celulose e da hemicelulose, dois dos mais abundantes polímeros na terra. A integração dos componentes celulossomais ocorre através de interacções proteína-proteína, muito ordenadas, estabelecidas entre coesinas e doquerinas, cuja especificidade permite a incorporação precisa de celulases e hemicelulases numa proteína de integração celulossomal. Os celulossomas dos organismos Clostridium thermocellum e C. cellulolyticum têm sido extensivamente caracterizados e constituem o paradigma para a organização de celulases e hemicelulases em complexos multienzimáticos de bactérias anaeróbias, tanto termófilas como mesófilas, respectivamente. A recente sequenciação dos genomas do C. thermocellum e do C. cellulolyticum permitiu a identificação de um conjunto completo de coesinas, doquerinas e domínios celulossomais codificados por estas bactérias. Neste trabalho, várias questões relativas à especificidade coesina-doquerina, à formação do celulossoma e ao papel dos componentes celulossomais catalíticos serão investigadas. A especificidade de doquerinas e coesinas do C. thermocellum recentemente identificados foi descrita (Capítulo 2). Uma nova proteína da parede celular, designada como OlpC, que contém um domínio doquerina, foi descoberta no C. thermocellum. Demonstrou-se que um conjunto restrito de doquerinas reage preferencialmente com a OlpC. Os restantes polipéptidos expressos pela bactéria C. thermocellum, contendo também doquerinas, ligam-se ao celulossoma. A estrutura de dois complexos coesina-doquerina do C. cellulolyticum revelou, como previamente comunicado para a bactéria C.thermocellum, que as doquerinas de organismos mesófilos também apresentam uma dupla ligação para com as coesinas (Capítulo 3). Estudos preliminares de cristalização dos dois domínios Nterminais da xilanase celulossomal Xyn10B antecipam a futura elucidação da sua estrutura 3D, o que poderá esclarecer a função deste enzima na hidrólise da parede celular vegetal (Capítulo 4). Finalmente, foi descrita uma esterase de hidratos de carbono da família 2 (CtCE2), que apresenta uma funcionalidade discreta, não-catalítica de ligação a glúcidos no seu centro catalítico. A CtCE2 fornece um raro exemplo de “gene sharing”, onde a introdução de uma segunda funcionalidade no centro catalítico de uma enzima não compromete a actividade original do biocatalisador.
This work was funded by Fundação para a Ciência e a Tecnologia, grant SFRH/BD/25439/2005 Co-funded by POCTI/BIA-PRO/59118/2004 and PPCDT/BIA-PRO/59118/2004 from Ministério da Ciência, Tecnologia e Ensino Superior
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Dyer, Blake S. y n/a. "The synthesis and characterisation of phosphatidylinositol mannans". University of Otago. Department of Chemistry, 2008. http://adt.otago.ac.nz./public/adt-NZDU20080415.142001.

Texto completo
Resumen
Mycobacterial cell wall components have been shown to elicit a range of immunological responses in mammalian hosts. A family of cell wall antigens, the phosphatidylinositol mannans (PIMs), have been shown to reduce allergic response in a murine model of allergic airway disease and have been suggested as potential therapeutic agents. Isolation and characterisation of these compounds is not facile. To confirm the structure of PIMs a number of phosphatidylinositols (PIs), 1a-c, PIM1s 2a, 2d and 2e, and AcPIM1s, 2g and 2f, were prepared to allow assignment of the acylation pattern of natural products and for evaluation in immunological assays. As the natural products include 19:0 acylation in the form of (R)-tuberculostearoyl residues, a source of (R)-tuberculostearic acid was needed. To this end, an efficient synthesis of (R)-tuberculostearic acid from (S)-citronellol, utilising a copper-catalysed cross-coupling reaction and a modified Julia olefination, was developed. This material was incorporated into diacylglycerols prepared from (R)-benzyl glycidol. A protected myo-inositol derivative, 188, and two protected pseudo-disaccharides, 10 and 241, were prepared from myo-inositol via desymmetrisation utilising a camphylidene acetal. These were coupled with diacylglycerols via a phosphate ester and deprotected to give PIs, PIM1s and AcPIM1s. Mass spectrometry studies were undertaken on the PIs, 1a-c, PIM1s 2a, 2d and 2e, and AcPIM1s, 2g and 2f which structures that have been established by chemical synthesis. Comparison of these data with those reported for natural PIs and PIMs containing 19:0 ((R)-tuberculostearoyl) and 16:0 (palmitoyl) acyl groups unequivocally established that the 19:0 residue was located at the sn-1 and the 16:0 at the sn-2 position of the glycerol moiety in nature.
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

SURANA, UTTAM CHAND. "BIOCHEMICAL CHARACTERIZATION OF THE BACILLUS SUBTILIS MACROFIBER CELL SURFACE". Diss., The University of Arizona, 1987. http://hdl.handle.net/10150/184038.

Texto completo
Resumen
Cell walls of Bacillus subtilis macrofibers have been biochemically analyzed to determine the contribution of various surface polymers in the twist regulation. Helix hand inversion was induced by a variation in either the growth temperature or the nutritional composition of the culture medium. Initial experiments had demonstrated a fivefold difference in the sensitivity of right- and left-handed forms to muramidases indicating modifications of peptidoglycan as a possible mechanism underlaying inversion. An examination of lysozyme susceptibility of purified cell walls and whole cells derived from the two structural forms, however, exhibited no significant difference suggesting loss of the relevant component(s), perhaps biomechanical in nature, during disintegration of macrofibers. The effect of various twist modulators such as trypsin, ammonium sulfate and D-alanine on the development of helical twist in both switchable and "fixed" mutants were studied. The interaction matrices have established D-alanine as the most potent of right-factors. Intestinal alkaline phosphatase is reported as a newly discovered antagonist to the development of leftward twist. Heat inactivation and protein purification experiments strongly indicated that twist modulation was due to the phosphatase activity rather than minor protease contaminants. The chemical composition of cell walls purified from right- and left-handed structures was determined. No twist correlated differences in the overall content of peptidoglycan, teichoic acid and teichuronic acid were detected. Evidence is presented for the absence of correlation between the extent of ester-linked alanine substitution and twist state. These findings suggest that gross changes in wall composition is perhaps not the mechanism for hand inversion. From the profiles of the wall associated proteins, a 200 Kdal band has been identified whose presence is strongly correlated with the development of leftward twist. This polypeptide was found to be highly sensitive to trypsin; a property it shares with a previously proposed left-twist protein. Preliminary evidence for isolation of left-hand specific polyclonal antibodies is also presented. FJ7, a switchable mutant, was successfully transformed with a plasmid containing the Streptococcus transposon Tn917. A small bank of insertional mutants has been constructed for the isolation of mutants impaired in helix hand inversion.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía