Literatura académica sobre el tema "Bacterial surface"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Bacterial surface".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Bacterial surface"
Absolom, Darryl R. "The role of bacterial hydrophobicity in infection: bacterial adhesion and phagocytic ingestion". Canadian Journal of Microbiology 34, n.º 3 (1 de marzo de 1988): 287–98. http://dx.doi.org/10.1139/m88-054.
Texto completoEvans, Adele, Anthony J. Slate, Millie Tobin, Stephen Lynch, Joels Wilson Nieuwenhuis, Joanna Verran, Peter Kelly y Kathryn A. Whitehead. "Multifractal Analysis to Determine the Effect of Surface Topography on the Distribution, Density, Dispersion and Clustering of Differently Organised Coccal-Shaped Bacteria". Antibiotics 11, n.º 5 (21 de abril de 2022): 551. http://dx.doi.org/10.3390/antibiotics11050551.
Texto completoVadillo-Rodríguez, Virginia, Henk J. Busscher, Willem Norde, Joop de Vries, René J. B. Dijkstra, Ietse Stokroos y Henny C. van der Mei. "Comparison of Atomic Force Microscopy Interaction Forces between Bacteria and Silicon Nitride Substrata for Three Commonly Used Immobilization Methods". Applied and Environmental Microbiology 70, n.º 9 (septiembre de 2004): 5441–46. http://dx.doi.org/10.1128/aem.70.9.5441-5446.2004.
Texto completoHogan, Kayla, Sai Paul, Guanyou Lin, Jay Fuerte-Stone, Evgeni V. Sokurenko y Wendy E. Thomas. "Effect of Gravity on Bacterial Adhesion to Heterogeneous Surfaces". Pathogens 12, n.º 7 (15 de julio de 2023): 941. http://dx.doi.org/10.3390/pathogens12070941.
Texto completoPatel, Nirav, Ryan Guillemette, Ratnesh Lal y Farooq Azam. "Bacterial surface interactions with organic colloidal particles: Nanoscale hotspots of organic matter in the ocean". PLOS ONE 17, n.º 8 (25 de agosto de 2022): e0272329. http://dx.doi.org/10.1371/journal.pone.0272329.
Texto completoSejati, Bramasto Purbo, Tetiana Haniastuti, Ahmad Kusumaatmaja y Maria Goreti Widyastuti. "The Influence of Surface Damage on Miniplates: A Study of Bacterial Attachment Across Various Strains". F1000Research 14 (4 de febrero de 2025): 158. https://doi.org/10.12688/f1000research.159954.1.
Texto completoDang, Hongyue, Tiegang Li, Mingna Chen y Guiqiao Huang. "Cross-Ocean Distribution of Rhodobacterales Bacteria as Primary Surface Colonizers in Temperate Coastal Marine Waters". Applied and Environmental Microbiology 74, n.º 1 (26 de octubre de 2007): 52–60. http://dx.doi.org/10.1128/aem.01400-07.
Texto completoDu, Cezhi, Chengyong Wang, Tao Zhang, Xin Yi, Jianyi Liang y Hongjian Wang. "Reduced bacterial adhesion on zirconium-based bulk metallic glasses by femtosecond laser nanostructuring". Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 234, n.º 4 (30 de diciembre de 2019): 387–97. http://dx.doi.org/10.1177/0954411919898011.
Texto completoMüller, Rainer, Gerhard Gröger, Karl-Anton Hiller, Gottfried Schmalz y Stefan Ruhl. "Fluorescence-Based Bacterial Overlay Method for Simultaneous In Situ Quantification of Surface-Attached Bacteria". Applied and Environmental Microbiology 73, n.º 8 (16 de febrero de 2007): 2653–60. http://dx.doi.org/10.1128/aem.02884-06.
Texto completoCorcionivoschi, Nicolae, Igori Balta, Eugenia Butucel, David McCleery, Ioan Pet, Maria Iamandei, Lavinia Stef y Sorin Morariu. "Natural Antimicrobial Mixtures Disrupt Attachment and Survival of E. coli and C. jejuni to Non-Organic and Organic Surfaces". Foods 12, n.º 20 (21 de octubre de 2023): 3863. http://dx.doi.org/10.3390/foods12203863.
Texto completoTesis sobre el tema "Bacterial surface"
Château, Maarten de. "Functional, structural and evolutionary studies on a family of bacterial surface proteins". Lund : Dept. of Cell and Molecular Biology, Lund University, 1996. http://catalog.hathitrust.org/api/volumes/oclc/38947242.html.
Texto completoLloyd, Diarmuid Padraig. "Microscopic studies of surface growing bacterial populations". Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/10509.
Texto completoPetkova, Petya Stoyanova. "Surface nano-structured materials to control bacterial contamination". Doctoral thesis, Universitat Politècnica de Catalunya, 2016. http://hdl.handle.net/10803/398122.
Texto completoLa propagación de bacterias e infecciones, inicialmente limitada a infecciones adquiridas en el hospital, se ha extendido al resto de la sociedad causando enfermedades muy graves y más difíciles de tratar. Además, muchas de estas enfermedades son provocadas por bacterias que se han hecho resistentes a los antibióticos convencionales. Por lo tanto, limitar la capacidad de estas bacterias para desarrollar resistencia puede potencialmente reducir la alta incidencia de estas infecciones y evitar miles de muertes cada año. Las partículas de escala nanométrica son unas candidatas prometedoras para combatir las bacterias, ya que su mecanismo de acción las hace disminuir las probabilidades en el desarrollo de resistencia. Las nanopartículas (NPs) se pueden incorporar en matrices poliméricas para diseñar una amplia variedad de materiales nanocompuestos. Estas nanoestructuras consisten en NPs orgánicas/inorgánicas e inorgánicas representando una nueva clase de materiales con una amplia gama de aplicaciones. Esta tesis trata sobre el desarrollo de materiales antibacterianos con estructura nanométrica dirigidos a prevenir la propagación de bacterias. Para lograr esto, dos herramientas fisicoquímicas y biotecnológicas versátiles tales como sonoquímica y biocatálisis, se combinaron de manera innovadora. La irradiación por ultrasonido se ha utilizado para la generación de nanoestructuras diversas y su combinación con biocatalizadores (enzimas) abre nuevas perspectivas en el tratamiento de materiales, aquí ilustrados por la producción de textiles médicos recubiertos con NPs, membranas de tratamiento de agua y apósitos para heridas crónicas. La primera parte de la tesis tiene como objetivo el desarrollo de textiles médicos antibacterianos para prevenir la transmisión y proliferación de bacterias utilizando dos estrategias "de un solo paso" para el recubrimiento antibacteriano de estos textiles con NPs. En el primer enfoque NPs antibacterianas de óxido de zinc (ZnO NPs) y quitosano (CS) fueron depositadas simultáneamente sobre tejido de algodón por irradiación de ultrasonido. Los recubrimientos híbridos de NPs obtenidos demostraron propiedades antibacterianas duraderas después de varios lavados exhaustivos. Por otra parte, la presencia de biopolímeros en las NPs híbridas mejoraba la biocompatibilidad del material en comparación con el recubrimiento de solamente de ZnO NPs. En la segunda parte de la tesis, híbridos antibacterianos hechos de biopolímeros y NPs de plata y matrices de corcho, fueron ensamblados enzimáticamente en un material antimicrobiano para su utilización en la remediación de aguas. Biopolímeros antibacterianos aminofuncionalizados (CS y aminocelulosa) se utilizaron como agentes dopantes para estabilizar las dispersiones coloidales de plata (Ag NPs). Además, estas partículas presentan todas las funciones necesarias para su inmovilización covalente en el corcho proporcionando un efecto antibacteriano duradero. Estos biopolímeros aumentaron la eficacia antibacteriana de estos nanocompuestos en condiciones que simulan una situación real en humedales construidos. En la tercera parte de la tesis, se desarrolló un hidrogel nanocompuesto bioactivo para el tratamiento de heridas crónicas. Nanoesferas de galato de epigalocatequina (EGCG NSs) fueron sintetizadas a través de sonoquimica y se incorporaron y simultáneamente reticularon enzimáticamente en un hidrogel de quitosano tiolado. El potencial del material generado para el tratamiento de heridas crónicas fue evaluado por sus propiedades antibacterianas y su efecto inhibidor sobre biomarcadores producidos en heridas crónicas infectadas (mieloperoxidasa y colagenasa). También se consiguió la liberación sostenida de EGCG NSs por parte de la matriz generada, que junto con su buena biocompatibilidad, demostraba su potencial para el tratamiento de heridas crónicas.
Haynie, Teron D. "Synthesis of Bacterial Surface Glycans for Conjugate Vaccines". BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8669.
Texto completoRamos, Isabel Cristina Santos Silva de Faria. "Culturable bacterial community of the estuarine surface microlayer". Master's thesis, Universidade de Aveiro, 2009. http://hdl.handle.net/10773/849.
Texto completoA camada superficial aquática (1-1000 μm) é um ecossistema único, definido como a interface entre a hidrosfera e a atmosfera. É uma camada exposta a altas intensidades de radiação solar Ultra-Violeta, sendo enriquecida com compostos orgânicos e poluentes antropogénicos. Além disso, está sujeita a condições instáveis de temperatura e salinidade. Assim sendo, é razoável colocar-se a hipótese de que esta camada é habitada por comunidades bacterianas distintas e especializadas. Apenas alguns estudos sobre este tema foram publicados e os resultados foram frequentemente divergentes. Apesar do já reconhecido enviesamento introduzido pelas metodologias dependentes do cultivo, tais técnicas permanecem essenciais para a compreensão da fisiologia e ecologia da comunidade bacteriana. Os estuários são ambientes confinados e frequentemente muito poluídos, o que provavelmente favorece a formação de camadas superficiais claramente distintas das águas subjacentes. Portanto, o objectivo deste trabalho foi comparar as comunidades bacterianas cultiváveis da camada superficial aquática e da coluna de água. Foram escolhidos três locais ao longo do estuário Ria de Aveiro atendendo a diferentes parâmetros ambientais e exposição a poluentes. A amostragem foi realizada utilizando o método 'Glass- Plate'. As amostras foram obtidas em maré baixa, durante o dia e noite, em cinco campanhas, tendo em vista a quantificação das unidades formadoras de colónias e subsequente isolamento para caracterização filogenética. Para estes fins, usámos dois meios de cultura: GSP (Pseudomonas Aeromonas Selective Agar Base) e EA (Estuarine Agar). A quantificação das UFC indica que o número de bactérias provenientes da camada superficial (bacterioneuston) é cerca de três vezes mais abundante do que o proveniente da coluna de água (bacterioplâncton). Verifica-se uma diminuição da abundância de bacterioneuston de dia para noite, ao contrário do bacterioplâncton, que tende a aumentar durante o mesmo período. Dos isolados obtidos, o rDNA 16S foi e digerido com a enzima HaeIII. A partir de 402 isolados, foram identificados 72 perfis diferentes. Desses, 21 perfis foram exclusivos da camada superficial e 28 foram exclusivos da coluna de água. Representantes dos diferentes perfis foram analisados por sequenciação e bactérias pertencentes a 5 Filos: Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes e Deinococci-Thermus; e 9 Classes: Gammaproteobacteria, Alphaproteobacteria, Betaproteobacteria, Epsilonproteobacteria, Actinobacteria, Flavobacteria, Sphingobacteria, Deinococci e Bacilli foram identificadas. Os isolados afiliaram com sequências provenientes de ambientes aquáticos bem como de áreas altamente contaminadas. Os resultados apontam para uma comunidade cultivável distinta/particular na microcamada superficial estuarina. ABSTRACT: The sea surface microlayer (SML) is an unique ecosystem, defined as the interfacial film (uppermost 1–1000 μm) between the atmosphere and the ocean. Thereby, it is exposed to high intensities of solar radiation, and is enriched with organic compounds and pollutants from anthropogenic inputs. Also it is subjected to unstable temperature and salinity conditions. Thus, it is proper to hypothesize that the SML is inhabited by distinct and specialized microbial communities. Only a few studies on this topic were published and results wee frequently divergent. Despite the previously recognized biases introduced by culture-dependent methodologies, such techniques remain essential to understand bacterial population’s physiology and ecology. Estuaries are confined and frequently highly polluted environments, which probably favor the formation of distinct surface layers clearly distinct from underlying waters. Therefore, our goal was to compare the culturable bacterial communities occurring in SML and underlying waters (UW). Our work concerned three sampling sites in the estuary Ria de Aveiro, corresponding to different environmental parameters and exposure to pollutants. Sampling was conducted using the so-called ‘Glass-Plate’ method. The UW samples were collected directly into a sterilized glass bottle from a depth of approximately 0.4 m. Samples were obtained at low-tide, during day and night, in five campaigns, regarding the CFU (Colony Forming Units) quantification and subsequent recovery of bacterial isolates. For these purposes we used two culture media: GSP (Pseudomonas Aeromonas Selective Agar Base) and EA (Estuarine Agar). CFU quantification indicates that bacterioneuston is about three times more abundant than bacterioplankton. Generally bacterioneuston abundance decreases from day to night while bacterioplankton usually increases during the same period. From all the obtained isolates the 16S rDNA was amplified using universal primers and digested with the enzyme HaeIII. The profiles were analyzed using the software GelCompar and representatives of each pattern were selected for sequencing. From 402 isolates, 72 different profiles were identified. From those 21 profiles were exclusive from SML samples and 28 were exclusive from UW samples. Sequencing results allowed identifying bacteria belonging to 5 different Phyla: Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes and Deinococci-Thermus; and 9 Classes: Gammaproteobacteria, Alphaproteobacteria, Betaproteobacteria, Epsilonproteobacteria, Actinobacteria, Flavobacteria, Sphingobacteria, Deinococci e Bacilli. Isolates affiliated with sequences from aquatic environments as well as highly contaminated areas. The results point to a distinct/particular culturable community within the SML of this estuarine environment.
Auditto, Sanjana. "Synthesis of organic conductive polymers to struggle bacterial infections". Electronic Thesis or Diss., Aix-Marseille, 2022. http://www.theses.fr/2022AIXM0179.
Texto completoBacterial biofilms are in the background of many industrial, health and domestic adverse effects with economic losses leading to intensive research to design solutions to combat their formation and development. Two routes are commonly used to solve these issues, one aiming at preventing the adhesion of bacteria and the other at inhibiting and killing adhered microorganisms. Recent work has been done in that direction with the use of polymer-based antifouling or antibacterial surfaces acting either by contact effect or continuous release of bacterial substances. Besides, responsive surfaces to various stimuli (microenvironment, light, acoustic waves, etc.) have been developed to release biocides in a controlled way. In addition, the use of an electrical potential (bioelectric effect) has aroused interest to disrupt biofilms but remains underexploited. The present work focuses on the development of biocompatible electrostimulable surfaces based on either (i) self-assembled monolayers (SAMs) deposited on titanium or gold electrodes, or (ii) functionalized conductive polymers (CPs), to prevent adhesion and/or kill bacteria. Phosphonium-based SAMs have demonstrated interesting antibacterial properties, without release of biocidal agent, against Gram positive and negative strains (S. aureus, K. pneumoniae). In addition, thin films of homo- and copolymers of phosphonium-based pyrrole CPs were obtained by electropolymerization, and analyzed by modifying and applying a set of parameters and tested as antibacterial coatings. Lastly, hydrophilic phosphoniums have been synthesized and preliminary studies have highlighted their potential use as nanocarriers for drug delivery
Mitik-Dineva, Natasa. "Bacterial attachment to micro- and nano- structured surfaces". Swinburne Research Bank, 2009. http://hdl.handle.net/1959.3/48547.
Texto completoYe, Zhou. "Effect of Nanoscale Surface Structures on Microbe-Surface Interactions". Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/85387.
Texto completoPh. D.
Panhorst, Kimberly A. "Estimating Bacterial Loadings to Surface Waters from Agricultural Watersheds". Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/36433.
Texto completoThe bacterial model simulates die-off, bacterial partitioning between soil and water, and bacterial transport to surface waters in free (in solution) and sediment-adsorbed forms. Bacterial die-off was modeled using Chick's Law, bacterial partitioning was modeled with a linear isotherm equation, and bacterial transport was modeled using continuity and flow equations. The bacterial model was incorporated into the ANSWERS-2000 model, a continuous, distributed, nonpoint source pollution model. The model was tested using data from two plot studies. Calibration was required to improve runoff and sediment predictions. Bacterial model predictions underpredicted bacterial concentrations in runoff with a maximum underprediction error of 92.9%, but predictions were within an order of magnitude in all cases. Further model evaluation, on a larger watershed with predominantly overland flow, over a longer time period, is recommended, but such data were not available at the time of this assessment. The overall conclusions of this research were 1) FC and EC die-off or diminution under the examined field conditions followed Chick's Law, 2) measured die-off rate constants in the field were much less than those cited in literature for laboratory experiments, and 3) for the conditions simulated for two plot studies, the bacterial model predicted bacterial concentrations in runoff within an order of magnitude.
Master of Science
Redford, Amanda J. "Interspecies and temporal variation in bacterial leaf surface communities". Connect to online resource, 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1456691.
Texto completoLibros sobre el tema "Bacterial surface"
Ian, Hancock y Poxton Ian, eds. Bacterial cell surface techniques. Chichester [West Sussex]: Wiley, 1988.
Buscar texto completoB, Sleytr Uwe, ed. Crystalline bacterial cell surface proteins. Austin, TX: R.G. Landes Co., 1996.
Buscar texto completoSleytr, Uwe B., Paul Messner, Dietmar Pum y Margit Sára, eds. Crystalline Bacterial Cell Surface Layers. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73537-0.
Texto completoB, Sleytr U., ed. Crystalline bacterial cell surface layers. Berlin: Springer-Verlag, 1988.
Buscar texto completoSaeid, Abdolkabir M. Bacterial surface modification of pyrite. Birmingham: University of Birmingham, 1994.
Buscar texto completoBeveridge, Terry J. y Susan F. Koval, eds. Advances in Bacterial Paracrystalline Surface Layers. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4757-9032-0.
Texto completoJ, Beveridge Terrance, Koval Susan F y NATO Advanced Research Workshop on Advances in Bacterial Paracrystalline Surface Layers (1992 : London, Ont.), eds. Advances in bacterial paracrystalline surface layers. New York: Plenum Press, 1993.
Buscar texto completoK, Korhonen Timo, Dawes Edwin A, Mäkelä P. Helena, Federation of European Microbiological Societies. y Societas Biochemica, Biophysica, et Microbiologica Fenniae., eds. Enterobacterial surface antigens: Methods for molecular characterisation. Amsterdam: Elsevier, 1985.
Buscar texto completoPaul, Actor y American Society for Microbiology, eds. Antibiotic inhibition of bacterial cell surface assembly and function. Washington, D.C: American Society for Microbiology, 1988.
Buscar texto completoNava, Mozes, ed. Microbial cell surface analysis: Structural and physicochemical methods. New York: VCH, 1991.
Buscar texto completoCapítulos de libros sobre el tema "Bacterial surface"
Ofek, Itzhak, Halina Lis y Nathan Sharon. "Animal Cell Surface Membranes". En Bacterial Adhesion, 71–88. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4615-6514-7_3.
Texto completoIsticato, Rachele y Ezio Ricca. "Spore Surface Display". En The Bacterial Spore, 349–66. Washington, DC, USA: ASM Press, 2016. http://dx.doi.org/10.1128/9781555819323.ch17.
Texto completoCerone, Antonio y Enrico Marsili. "A Formal Model for the Simulation and Analysis of Early Biofilm Formation". En From Data to Models and Back, 134–51. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70650-0_9.
Texto completoRozgonyi, Ferenc, Åsa Ljungh, Wubshet Mamo, Stellan Hjertén y Torkel Wadström. "Bacterial Cell-Surface Hydrophobicity". En Pathogenesis of Wound and Biomaterial-Associated Infections, 233–44. London: Springer London, 1990. http://dx.doi.org/10.1007/978-1-4471-3454-1_28.
Texto completoReps, A. "Bacterial Surface-Ripened Cheeses". En Cheese: Chemistry, Physics and Microbiology, 137–72. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2648-3_5.
Texto completoReps, A. "Bacterial Surface-Ripened Cheeses". En Cheese: Chemistry, Physics and Microbiology, 137–72. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-2800-5_5.
Texto completoParwin, Shabnam, Sashi Kalan y Preeti Srivastava. "Bacterial Cell Surface Display". En ACS Symposium Series, 81–108. Washington, DC: American Chemical Society, 2019. http://dx.doi.org/10.1021/bk-2019-1329.ch005.
Texto completoDing, Aihao y Carl Nathan. "Regulation of Cell Surface Receptor Expression by LPS". En Bacterial Endotoxic Lipopolysaccharides, 373–86. Boca Raton: CRC Press, 2024. https://doi.org/10.1201/9781003574859-18.
Texto completoKoch, Arthur L. "Stresses on the Surface Stress Theory". En Bacterial Growth and Lysis, 427–42. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4757-9359-8_50.
Texto completoArdö, Ylva, Françoise Berthier, Katja Hartmann, Elisabeth Eugster-Meier, Marie-Therese Fröhlich-Wyder, Ernst Jakob y Daniel Wechsler. "Bacterial Surface-Ripened (Smear) Cheeses". En Global Cheesemaking Technology, 397–414. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781119046165.ch10.
Texto completoActas de conferencias sobre el tema "Bacterial surface"
Madugula, Sita Sirisha, Blythe Dumerer, Ruben Millan-Solsona, Checa Nualart Marti, Liam Collins, Rama K. Vasudevan, Retterer Scott, Lance Zhang, Spencer Cox y Jennifer L. Morrell-Falvey. "Image Segmentation of Bacterial Biofilms to Study Pathogen-Surface Interactions". En 2024 IEEE International Conference on Big Data (BigData), 4939–40. IEEE, 2024. https://doi.org/10.1109/bigdata62323.2024.10826045.
Texto completoDurand, Hippolyte, Loïc Laplatine, Ali Kheir-Aldine, Caroline Fontelaye, Doriane Eyvrard, Anne-Gaëlle Bourdat, Malika Amdaoud, Guillaume Nonglaton y Thomas Alava. "Surface Biofunctionalization of Silicon Photonic Mach-Zehnder Interferometers for Bacterial Biosensor Development". En 2024 IEEE BioSensors Conference (BioSensors), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/biosensors61405.2024.10712725.
Texto completoIbrahim, Mohd Danial, Alyssa Asong Ananthan, Dayang Salyani Abang Mahmod, Awang Ahmad Sallehin Awang Husaini, Ngieng Ngui Sing, Shunsuke Nakano, Yuta Sunami y Pierre Barroy. "Antibacterial Properties of Snakeskin Inspired PDMS Surfaces Layered With Poly-DL-lactic Acid Nanosheet". En ASME 2023 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/smasis2023-111176.
Texto completoKrebsbach, Meaghen A. y Karim H. Muci-Ku¨chler. "Effect of Initial Surface Concentration on Bacterial Distribution in a Surrogate Ballistic Wound". En ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64243.
Texto completoPark, Eun-Jung, Myoung-Ock Cho y Jung Kyung Kim. "Growth Responses of Swarming and Gliding Bacteria on Substrates With Different Levels of Stiffness". En ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13154.
Texto completoTzeng, Tzuen-Rong J., Yunyan R. Cheng, Reza Saeidpourazar, Siddharth Sanjeev Aphale y Nader Jalili. "Adhesin-Specific Nanomechnical Cantilever Biosensors for Detection of Microorganisms". En ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18487.
Texto completoBunpot - Sirinutsomboon, Michael J Delwiche y Glenn M Young. "Effect of Surface Microstructure on Bacterial Attachment". En 2010 Pittsburgh, Pennsylvania, June 20 - June 23, 2010. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2010. http://dx.doi.org/10.13031/2013.30009.
Texto completoLitvinenko, V. V., E. V. Vasilieva, M. A. Abdulkadieva, E. V. Sysolyatina y S. A. Ermolaeva. "THE USE OF BACTERIAL MOTILITY CHARACTERISTICS FOR RAPID ASSESSMENT OF ANTIBIOTIC SENSITIVITY". En X Международная конференция молодых ученых: биоинформатиков, биотехнологов, биофизиков, вирусологов и молекулярных биологов — 2023. Novosibirsk State University, 2023. http://dx.doi.org/10.25205/978-5-4437-1526-1-193.
Texto completoZheng, Zhouyuan, Parth Bansal y Yumeng Li. "Numerical Study on Antibacterial Effects of Bio-Inspired Nanostructured Surface". En ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23594.
Texto completoSteager, Edward, M. Selman Sakar, U. Kei Cheang, David Casale, Vijay Kumar, George J. Pappas y Min Jun Kim. "Galvanotactic Control of Self-Powered Microstructures". En ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66647.
Texto completoInformes sobre el tema "Bacterial surface"
Apte, Shruti, Smita Bhutda, Sourav Ghosh y Anirban Banerjee. Ubiquitination of bacterial surface proteins act as novel innate pathogen sensing strategy. Peeref, junio de 2023. http://dx.doi.org/10.54985/peeref.2306p5609776.
Texto completoAlvarez, Rene, Alexander J. Burdette, Xiaomeng Wu, Christian Kotanen, Yiping Zhao y Ralph A. Tripp. Rapid Identification of Bacterial Pathogens of Military Interest Using Surface-Enhanced Raman Spectroscopy. Fort Belvoir, VA: Defense Technical Information Center, junio de 2014. http://dx.doi.org/10.21236/ada605244.
Texto completoFrymier, P. D. Jr. Bacterial migration and motion in a fluid phase and near a solid surface. Office of Scientific and Technical Information (OSTI), enero de 1995. http://dx.doi.org/10.2172/573237.
Texto completoBranch, Darren W., Dale L. Huber, Susan Marie Brozik y Thayne L. Edwards. Shear horizontal surface acoustic wave microsensor for Class A viral and bacterial detection. Office of Scientific and Technical Information (OSTI), octubre de 2008. http://dx.doi.org/10.2172/1028915.
Texto completoLindow, Steven, Isaac Barash y Shulamit Manulis. Relationship of Genes Conferring Epiphytic Fitness and Internal Multiplication in Plants in Erwinia herbicola. United States Department of Agriculture, julio de 2000. http://dx.doi.org/10.32747/2000.7573065.bard.
Texto completoKozlowski, Mark, Joshua Orlicki, Randall Hughes y Randi Pullen. Peptide and Hydrophobin Interactions with Polymeric Substrates Screened by a Bacterial Surface Display Method. Aberdeen Proving Ground, MD: DEVCOM Army Research Laboratory, septiembre de 2021. http://dx.doi.org/10.21236/ad1150281.
Texto completoPhisalaphong, Muenduen y Neeracha Sanchavanakit. Development of bacterial cellulose for temporary skin substitute. Chulalongkorn University, 2006. https://doi.org/10.58837/chula.res.2006.74.
Texto completoGottlieb, Yuval, Bradley Mullens y Richard Stouthamer. investigation of the role of bacterial symbionts in regulating the biology and vector competence of Culicoides vectors of animal viruses. United States Department of Agriculture, junio de 2015. http://dx.doi.org/10.32747/2015.7699865.bard.
Texto completoChoudhary, Ruplal, Victor Rodov, Punit Kohli, Elena Poverenov, John Haddock y Moshe Shemesh. Antimicrobial functionalized nanoparticles for enhancing food safety and quality. United States Department of Agriculture, enero de 2013. http://dx.doi.org/10.32747/2013.7598156.bard.
Texto completoSplitter, Gary y Menachem Banai. Microarray Analysis of Brucella melitensis Pathogenesis. United States Department of Agriculture, 2006. http://dx.doi.org/10.32747/2006.7709884.bard.
Texto completo