Artículos de revistas sobre el tema "Avalanche photodiode operated in Geiger mode"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Avalanche photodiode operated in Geiger mode.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Avalanche photodiode operated in Geiger mode".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Sugihara, K., E. Yagyu y Y. Tokuda. "Numerical analysis of single photon detection avalanche photodiodes operated in the Geiger mode". Journal of Applied Physics 99, n.º 12 (15 de junio de 2006): 124502. http://dx.doi.org/10.1063/1.2207575.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Karve, G., S. Wang, F. Ma, X. Li, J. C. Campbell, R. G. Ispasoiu, D. S. Bethune et al. "Origin of dark counts in In0.53Ga0.47As∕In0.52Al0.48As avalanche photodiodes operated in Geiger mode". Applied Physics Letters 86, n.º 6 (7 de febrero de 2005): 063505. http://dx.doi.org/10.1063/1.1861498.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Salzmann, Hans, Per Nielsen y Chris Gowers. "Digital single-photon-avalanche-diode arrays for time-of-flight Thomson scattering diagnostics". Review of Scientific Instruments 93, n.º 8 (1 de agosto de 2022): 083517. http://dx.doi.org/10.1063/5.0095252.

Texto completo
Resumen
The collection optics of Thomson scattering systems for plasma devices are designed with maximum possible étendue to keep the required laser energy low. If the spatial resolution along the laser beam is performed by a time-of-flight method, then the detectors, in addition to a large sensitive area, must offer a high frequency bandwidth. Up until now, only microchannel-plate photomultipliers meet these requirements. Here, we investigate the potential use of digital avalanche photodiode arrays operated in the Geiger mode as alternative detectors. In this mode of operation, each array will serve as a fast, sensitive detector. The use of these detectors will lead to significant improvements of the Thomson scattering diagnostic. Most important of these will be a better spatial resolution, down to about 2 cm without deconvolution. Furthermore, the lifetime of the detectors will be increased; the detectors will cover the whole blue wing of the scattered spectrum when using a single wavelength laser, and this will enable measurements of electron temperature and density profiles at kHz repetition rates.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Kang, Jong-Ik, Hyuk-Kee Sung, Hyungtak Kim, Eugene Chong y Ho-Young Cha. "Diode quenching for Geiger mode avalanche photodiode". IEICE Electronics Express 15, n.º 9 (2018): 20180062. http://dx.doi.org/10.1587/elex.15.20180062.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Sciacca, Emilio, G. Condorelli, S. Aurite, S. Lombardo, M. Mazzillo, D. Sanfilippo, G. Fallica y E. Rimini. "Crosstalk Characterization in Geiger-Mode Avalanche Photodiode Arrays". IEEE Electron Device Letters 29, n.º 3 (marzo de 2008): 218–20. http://dx.doi.org/10.1109/led.2007.915373.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Blazej, Josef. "Photon number resolving in geiger mode avalanche photodiode photon counters". Journal of Modern Optics 51, n.º 9-10 (1 de junio de 2004): 1491–97. http://dx.doi.org/10.1080/09500340408235287.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Kolb, Kimberly E., Donald F. Figer, Joong Lee y Brandon J. Hanold. "Radiation tolerance of a Geiger-mode avalanche photodiode imaging array". Journal of Astronomical Telescopes, Instruments, and Systems 2, n.º 3 (6 de julio de 2016): 036001. http://dx.doi.org/10.1117/1.jatis.2.3.036001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Wang, Liang, Shaokun Han, Wenze Xia y Jieyu Lei. "Adaptive aperture for Geiger mode avalanche photodiode flash ladar systems". Review of Scientific Instruments 89, n.º 2 (febrero de 2018): 023105. http://dx.doi.org/10.1063/1.4989748.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Aull, Brian F., Erik K. Duerr, Jonathan P. Frechette, K. Alexander McIntosh, Daniel R. Schuette y Richard D. Younger. "Large-Format Geiger-Mode Avalanche Photodiode Arrays and Readout Circuits". IEEE Journal of Selected Topics in Quantum Electronics 24, n.º 2 (marzo de 2018): 1–10. http://dx.doi.org/10.1109/jstqe.2017.2736440.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Wang, Liang, Shaokun Han y Jieyu Lei. "Optical attenuator for Geiger mode avalanche photodiode laser detection systems". Optik - International Journal for Light and Electron Optics 153 (enero de 2018): 144–55. http://dx.doi.org/10.1016/j.ijleo.2017.10.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Li, Lianghui, Dong Zhou, Hai Lu, Wenkai Liu, Xiaofan Mo, Fangfang Ren, Dunjun Chen et al. "4H–SiC Avalanche Photodiode Linear Array Operating in Geiger Mode". IEEE Photonics Journal 9, n.º 5 (octubre de 2017): 1–7. http://dx.doi.org/10.1109/jphot.2017.2750686.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Aull, Brian. "Geiger-Mode Avalanche Photodiode Arrays Integrated to All-Digital CMOS Circuits". Sensors 16, n.º 4 (8 de abril de 2016): 495. http://dx.doi.org/10.3390/s16040495.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Gatt, Philip, Steven Johnson y Terry Nichols. "Geiger-mode avalanche photodiode ladar receiver performance characteristics and detection statistics". Applied Optics 48, n.º 17 (8 de junio de 2009): 3261. http://dx.doi.org/10.1364/ao.48.003261.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Gatt, Philip, Steven Johnson y Terry Nichols. "Geiger-mode avalanche photodiode ladar receiver performance characteristics and detection statistics". Applied Optics 48, n.º 17 (8 de junio de 2009): 3262. http://dx.doi.org/10.1364/ao.48.003262.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

KAGAWA, T. "Design of Deep Guard Ring for Geiger Mode Operation Avalanche Photodiode". IEICE Transactions on Electronics E88-C, n.º 11 (1 de noviembre de 2005): 2136–40. http://dx.doi.org/10.1093/ietele/e88-c.11.2136.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Grzesik, Michael, Robert Bailey, Joe Mahan y Jim Ampe. "Development of Fuses for Protection of Geiger-Mode Avalanche Photodiode Arrays". Journal of Electronic Materials 44, n.º 11 (11 de septiembre de 2015): 4187–90. http://dx.doi.org/10.1007/s11664-015-3975-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Oh, Min Seok, Hong Jin Kong, Tae Hoon Kim, Keun Ho Hong, Byung Wook Kim y Dong Jo Park. "Multihit mode direct-detection laser radar system using a Geiger-mode avalanche photodiode". Review of Scientific Instruments 81, n.º 3 (marzo de 2010): 033109. http://dx.doi.org/10.1063/1.3374109.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Wang Dinan, 王弟男, 陈长青 Chen Changqing y 王挺峰 Wang Tingfeng. "A Study on Photon Counting Detection Principle of Geiger-Mode Avalanche Photodiode". Laser & Optoelectronics Progress 49, n.º 12 (2012): 121202. http://dx.doi.org/10.3788/lop49.121202.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Ng, J. S., C. H. Tan, G. J. Rees y J. P. R. David. "Effects of dead space on breakdown probability in Geiger mode avalanche photodiode". Journal of Modern Optics 54, n.º 2-3 (20 de enero de 2007): 353–60. http://dx.doi.org/10.1080/09500340600753814.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Johnson, I., Z. Sadygov, O. Bunk, A. Menzel, F. Pfeiffer y D. Renker. "A Geiger-mode avalanche photodiode array for X-ray photon correlation spectroscopy". Journal of Synchrotron Radiation 16, n.º 1 (21 de noviembre de 2008): 105–9. http://dx.doi.org/10.1107/s0909049508034365.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Liu, Qiaoli, Li Xu, Yuxin Jin, Shifeng Zhang, Yitong Wang, Anqi Hu y Xia Guo. "Ultraviolet Response in Coplanar Silicon Avalanche Photodiodes with CMOS Compatibility". Sensors 22, n.º 10 (20 de mayo de 2022): 3873. http://dx.doi.org/10.3390/s22103873.

Texto completo
Resumen
Highly sensitive ultraviolet (UV) photodetectors are highly desired for industrial and scientific applications. However, the responsivity of silicon photodiodes in the UV wavelength band is relatively low due to high-density Si/SiO2 interface states. In this paper, a coplanar avalanche photodiode (APD) was developed with a virtual guard ring design. When working in Geiger mode, it exhibited a strong UV response. The responsivity of 4 × 103 A/W (corresponding to a gain of 8 × 106) at 261 nm is measured under the incident power of 0.6 μW with an excess bias of 1.5 V. To the best of our knowledge, the maximum 3-dB bandwidth of 1.4 GHz is the first report ever for a Si APD when working in the Geiger mode in spite of the absence of an integrated CMOS read-out circuit.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Qu, Chengzhi, Yan Zhang, Yang Yang y Shuang Wang. "Discrete probabilistic detection model for a Geiger-mode avalanche photodiode array with crosstalk". Optics Letters 46, n.º 6 (15 de marzo de 2021): 1442. http://dx.doi.org/10.1364/ol.419204.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Kolb, Kimberly. "Signal-to-noise ratio of Geiger-mode avalanche photodiode single-photon counting detectors". Optical Engineering 53, n.º 8 (31 de marzo de 2014): 081904. http://dx.doi.org/10.1117/1.oe.53.8.081904.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Henriksson, Markus. "Photon-counting panoramic three-dimensional imaging using a Geiger-mode avalanche photodiode array". Optical Engineering 57, n.º 09 (12 de septiembre de 2018): 1. http://dx.doi.org/10.1117/1.oe.57.9.093104.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Zhou, Xin, Jianfeng Sun, Peng Jiang, Di Liu y Qi Wang. "Influence investigation on ranging performance for range-gated Geiger-mode avalanche photodiode ladar". Applied Optics 57, n.º 10 (30 de marzo de 2018): 2667. http://dx.doi.org/10.1364/ao.57.002667.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Viterbini, Maurizio, Sergio Nozzoli, Massimo Poli, Alberto Adriani, Francesco Nozzoli, Angelina Ottaviano y Stefano Ponzo. "Voltage breakdown follower avoids hard thermal constraints in a Geiger mode avalanche photodiode". Applied Optics 35, n.º 27 (20 de septiembre de 1996): 5345. http://dx.doi.org/10.1364/ao.35.005345.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Luu, Jane X. y Leaf A. Jiang. "Saturation effects in heterodyne detection with Geiger-mode InGaAs avalanche photodiode detector arrays". Applied Optics 45, n.º 16 (1 de junio de 2006): 3798. http://dx.doi.org/10.1364/ao.45.003798.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Qu, Hui-Ming, Yi-Fan Zhang, Zhong-Jie Ji y Qian Chen. "The performance of photon counting imaging with a Geiger mode silicon avalanche photodiode". Laser Physics Letters 10, n.º 10 (14 de agosto de 2013): 105201. http://dx.doi.org/10.1088/1612-2011/10/10/105201.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Kindt, W. J., N. H. Shahrjerdy y H. W. van Zeijl. "A silicon avalanche photodiode for single optical photon counting in the Geiger mode". Sensors and Actuators A: Physical 60, n.º 1-3 (mayo de 1997): 98–102. http://dx.doi.org/10.1016/s0924-4247(97)01356-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Peng, Zhao, Zhang Yan, Hua Yuming y Qian Weiping. "Look-back-upon tree recurrence method for Geiger-mode avalanche photodiode performance prediction". Optics Letters 40, n.º 16 (10 de agosto de 2015): 3822. http://dx.doi.org/10.1364/ol.40.003822.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Yafan Shi, Yafan Shi, Zhaohui Li Zhaohui Li, Baicheng Feng Baicheng Feng, Peiqin Yan Peiqin Yan, Bingcheng Du Bingcheng Du, Hui Zhou Hui Zhou, Haifeng Pan Haifeng Pan y and Guang Wu and Guang Wu. "Enhanced solar-blind ultraviolet single-photon detection with a Geiger-mode silicon avalanche photodiode". Chinese Optics Letters 14, n.º 3 (2016): 030401–30404. http://dx.doi.org/10.3788/col201614.030401.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Luo, Hanjun, Benlian Xu, Huigang Xu, Jingbo Chen y Yadan Fu. "Maximum detection range limitation of pulse laser radar with Geiger-mode avalanche photodiode array". Journal of Modern Optics 62, n.º 9 (3 de febrero de 2015): 761–68. http://dx.doi.org/10.1080/09500340.2015.1005703.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Itzler, Mark A., Uppili Krishnamachari, Mark Entwistle, Xudong Jiang, Mark Owens y Krystyna Slomkowski. "Dark Count Statistics in Geiger-Mode Avalanche Photodiode Cameras for 3-D Imaging LADAR". IEEE Journal of Selected Topics in Quantum Electronics 20, n.º 6 (noviembre de 2014): 318–28. http://dx.doi.org/10.1109/jstqe.2014.2321525.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Carroll, M. S., K. Childs, R. Jarecki, T. Bauer y K. Saiz. "Ge–Si separate absorption and multiplication avalanche photodiode for Geiger mode single photon detection". Applied Physics Letters 93, n.º 18 (3 de noviembre de 2008): 183511. http://dx.doi.org/10.1063/1.3020297.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Ge, Peng, Cong Chen, Zhen Shang, Yanen Fan, Jingjing Guo, Zibo Zhuang y Jialong Ge. "Three-Dimensional Laser Imaging Based on a Photon-Counting Avalanche Photodiode Array". EPJ Web of Conferences 237 (2020): 07026. http://dx.doi.org/10.1051/epjconf/202023707026.

Texto completo
Resumen
Photon-counting detector array is very desired for high-resolution laser imaging based on direct time-of-flight measurement. Such systems have potential applications in remote sensing with long distances. We will perform three-dimensional imaging using a large InGaAs Geiger-mode avalanche photodiode array which has single-photon sensitivity. To improve the image quality with only a few photon detections, the photon counting imaging process is analyzed and a regularization method based on pixel spatial correlation is employed for image reconstruction. The performance of the method is compared with that of conventional maximum likelihood estimation on intensity and range image reconstructions of a building about six hundred meters away.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Vilella, E. y A. Diéguez. "Avoiding sensor blindness in Geiger mode avalanche photodiode arrays fabricated in a conventional CMOS process". Journal of Instrumentation 6, n.º 12 (2 de diciembre de 2011): C12005. http://dx.doi.org/10.1088/1748-0221/6/12/c12005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Vilella, E., A. Comerma, O. Alonso, D. Gascon y A. Diéguez. "Gated Geiger mode avalanche photodiode pixels with integrated readout electronics for low noise photon detection". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 695 (diciembre de 2012): 218–21. http://dx.doi.org/10.1016/j.nima.2011.12.026.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Ke, Shaoying, Shaoming Lin, Wei Huang, Jianyuan Wang, Buwen cheng, Kun Liang, Cheng Li y Songyan Chen. "Geiger mode theoretical study of a wafer-bonded Ge on Si single-photon avalanche photodiode". Journal of Physics D: Applied Physics 50, n.º 5 (10 de enero de 2017): 055106. http://dx.doi.org/10.1088/1361-6463/aa52b9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Aull, Brian F., Robert K. Reich, Christopher M. Ward, David M. Craig, Douglas J. Young y Robert L. Johnson. "Detection Statistics in Geiger-Mode Avalanche Photodiode Quad-Cell Arrays With Crosstalk and Dead Time". IEEE Sensors Journal 15, n.º 4 (abril de 2015): 2133–43. http://dx.doi.org/10.1109/jsen.2014.2367235.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Buchner, Andre, Stefan Hadrath, Roman Burkard, Florian M. Kolb, Jennifer Ruskowski, Manuel Ligges y Anton Grabmaier. "Analytical Evaluation of Signal-to-Noise Ratios for Avalanche- and Single-Photon Avalanche Diodes". Sensors 21, n.º 8 (20 de abril de 2021): 2887. http://dx.doi.org/10.3390/s21082887.

Texto completo
Resumen
Performance of systems for optical detection depends on the choice of the right detector for the right application. Designers of optical systems for ranging applications can choose from a variety of highly sensitive photodetectors, of which the two most prominent ones are linear mode avalanche photodiodes (LM-APDs or APDs) and Geiger-mode APDs or single-photon avalanche diodes (SPADs). Both achieve high responsivity and fast optical response, while maintaining low noise characteristics, which is crucial in low-light applications such as fluorescence lifetime measurements or high intensity measurements, for example, Light Detection and Ranging (LiDAR), in outdoor scenarios. The signal-to-noise ratio (SNR) of detectors is used as an analytical, scenario-dependent tool to simplify detector choice for optical system designers depending on technologically achievable photodiode parameters. In this article, analytical methods are used to obtain a universal SNR comparison of APDs and SPADs for the first time. Different signal and ambient light power levels are evaluated. The low noise characteristic of a typical SPAD leads to high SNR in scenarios with overall low signal power, but high background illumination can saturate the detector. LM-APDs achieve higher SNR in systems with higher signal and noise power but compromise signals with low power because of the noise characteristic of the diode and its readout electronics. Besides pure differentiation of signal levels without time information, ranging performance in LiDAR with time-dependent signals is discussed for a reference distance of 100 m. This evaluation should support LiDAR system designers in choosing a matching photodiode and allows for further discussion regarding future technological development and multi pixel detector designs in a common framework.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Luo, Hanjun, Zhengbiao Ouyang, Qiang Liu, Zhiliang Chen y Hualan Lu. "Cumulative detection probabilities and range accuracy of a pulsed Geiger-mode avalanche photodiode laser ranging system". Journal of Modern Optics 64, n.º 18 (17 de mayo de 2017): 1898–906. http://dx.doi.org/10.1080/09500340.2017.1326636.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Lee, Kiwon, Byoungwook Lee, Sunwoong Yoon, Jung-ho Hong y Kyounghoon Yang. "A Low Noise Planar-Type Avalanche Photodiode using a Single-Diffusion Process in Geiger-Mode Operation". Japanese Journal of Applied Physics 52, n.º 7R (1 de julio de 2013): 072201. http://dx.doi.org/10.7567/jjap.52.072201.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Ke, Shaoying, Shaoming Lin, Danfeng Mao, Xiaoli Ji, Wei Huang, Jianfang Xu, Cheng Li y Songyan Chen. "Interface State Calculation of the Wafer-Bonded Ge/Si Single-Photon Avalanche Photodiode in Geiger Mode". IEEE Transactions on Electron Devices 64, n.º 6 (junio de 2017): 2556–63. http://dx.doi.org/10.1109/ted.2017.2696579.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Liu, Mingguo, Xiaogang Bai, Chong Hu, Xiangyi Guo, Joe C. Campbell, Zhong Pan y Mark M. Tashima. "Low Dark Count Rate and High Single-Photon Detection Efficiency Avalanche Photodiode in Geiger-Mode Operation". IEEE Photonics Technology Letters 19, n.º 6 (marzo de 2007): 378–80. http://dx.doi.org/10.1109/lpt.2007.891939.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Zhou, Peng, Zhengjun Wei, Changjun Liao, Chunfei Li y Shuqiong Yuan. "A rigorous theoretical analysis for an In0.53Ga0.47As/InP single photon avalanche photodiode under Geiger mode operation". Journal of Physics D: Applied Physics 41, n.º 15 (30 de junio de 2008): 155101. http://dx.doi.org/10.1088/0022-3727/41/15/155101.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Stoykov, A., R. Scheuermann y K. Sedlak. "A time resolution study with a plastic scintillator read out by a Geiger-mode Avalanche Photodiode". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 695 (diciembre de 2012): 202–5. http://dx.doi.org/10.1016/j.nima.2011.11.011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Oh, Min Seok, Hong Jin Kong, Tae Hoon Kim, Keun Ho Hong y Byung Wook Kim. "Reduction of range walk error in direct detection laser radar using a Geiger mode avalanche photodiode". Optics Communications 283, n.º 2 (enero de 2010): 304–8. http://dx.doi.org/10.1016/j.optcom.2009.10.009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Zhou, Xin, Jian-Feng Sun, Peng Jiang, Di Liu, Xiao-Jing Shi y Qi Wang. "Research of detecting the laser’s secondary reflected echo from target by using Geiger-mode avalanche photodiode". Optics Communications 433 (febrero de 2019): 1–9. http://dx.doi.org/10.1016/j.optcom.2018.09.057.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Oh, Min Seok, Hong Jin Kong, Tae Hoon Kim, Keun Ho Hong, Byung Wook Kim y Dong Jo Park. "Time-of-Flight Analysis of Three-Dimensional Imaging Laser Radar Using A Geiger-Mode Avalanche Photodiode". Japanese Journal of Applied Physics 49, n.º 2 (22 de febrero de 2010): 026601. http://dx.doi.org/10.1143/jjap.49.026601.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Lü, Hua. "Experimental Characterization of APD and Design of Quenching Circuit for Single-Photon Detection". Applied Mechanics and Materials 246-247 (diciembre de 2012): 273–78. http://dx.doi.org/10.4028/www.scientific.net/amm.246-247.273.

Texto completo
Resumen
In this paper, we experimentally characterize the Inga As/Imp avalanche photodiode (APD), which is working in Geiger mode, so as to choose the single photon detector for quantum communication. Due to the fact that bias of APD tends to be flat after avalanche, we first adopt the methodology of passive quenching to determine dark breakdown voltage. Experiment results indicate that temperature reduction will widen the optimal operating region and increase the optimal multiplication; therefore APD will be more sensitive. Epitaxial APD is the best choice for single-photon detection among the APDs we have tested for its low noise level and high signal-to-noise ratio (SNR). Finally, we design a mixed passive-active quenching integrated circuit with gate control, which is quick with the quenching time of about 25ns and has controllable dead time with minimum of about 60ns.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía