Literatura académica sobre el tema "Autotrophic production"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Autotrophic production".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Autotrophic production"
Oh, S. E., K. S. Kim, H. C. Choi, J. Cho y I. S. Kim. "Kinetics and physiological characteristics of autotrophic dentrification by denitrifying sulfur bacteria". Water Science and Technology 42, n.º 3-4 (1 de agosto de 2000): 59–68. http://dx.doi.org/10.2166/wst.2000.0359.
Texto completoDuarte, Carlos M. y Just Cebrián. "The fate of marine autotrophic production". Limnology and Oceanography 41, n.º 8 (diciembre de 1996): 1758–66. http://dx.doi.org/10.4319/lo.1996.41.8.1758.
Texto completoGifuni, Imma, Giuseppe Olivieri, Antonino Pollio, Telma Teixeira Franco y Antonio Marzocchella. "Autotrophic starch production by Chlamydomonas species". Journal of Applied Phycology 29, n.º 1 (4 de septiembre de 2016): 105–14. http://dx.doi.org/10.1007/s10811-016-0932-2.
Texto completoFrolov, Evgenii N., Ilya V. Kublanov, Stepan V. Toshchakov, Evgenii A. Lunev, Nikolay V. Pimenov, Elizaveta A. Bonch-Osmolovskaya, Alexander V. Lebedinsky y Nikolay A. Chernyh. "Form III RubisCO-mediated transaldolase variant of the Calvin cycle in a chemolithoautotrophic bacterium". Proceedings of the National Academy of Sciences 116, n.º 37 (26 de agosto de 2019): 18638–46. http://dx.doi.org/10.1073/pnas.1904225116.
Texto completoTrentin, Giulia, Veronica Lucato, Eleonora Sforza y Alberto Bertucco. "Stabilizing autotrophic cyanophycin production in continuous photobioreactors". Algal Research 60 (diciembre de 2021): 102518. http://dx.doi.org/10.1016/j.algal.2021.102518.
Texto completoOlivieri, Giuseppe, Renato S. Coellho, Telma T. Franco, Antonino Pollio y Antonio Marzocchella. "Polysaccharides production by autotrophic cultures of microalgae". New Biotechnology 31 (julio de 2014): S17. http://dx.doi.org/10.1016/j.nbt.2014.05.1651.
Texto completoJeong, Byoung Kyong, Kazuhiro Fujiwara y Toyoki Kozai. "Carbon Dioxide Enrichment in Autotrophic Micropropagation: Methods and Advantages". HortTechnology 3, n.º 3 (julio de 1993): 332–34. http://dx.doi.org/10.21273/horttech.3.3.332.
Texto completoGeertz-Hansen, O., C. Montes, C. M. Duarte, K. Sand-Jensen, N. Marbá y P. Grillas. "Ecosystem metabolism in a temporary Mediterranean marsh (Doñana National Park, SW Spain)". Biogeosciences Discussions 7, n.º 4 (26 de agosto de 2010): 6495–521. http://dx.doi.org/10.5194/bgd-7-6495-2010.
Texto completoGeertz-Hansen, O., C. Montes, C. M. Duarte, K. Sand-Jensen, N. Marbá y P. Grillas. "Ecosystem metabolism in a temporary Mediterranean marsh (Doñana National Park, SW Spain)". Biogeosciences 8, n.º 4 (19 de abril de 2011): 963–71. http://dx.doi.org/10.5194/bg-8-963-2011.
Texto completoRonan, Patrick, Otini Kroukamp, Steven N. Liss y Gideon Wolfaardt. "Interaction between CO2-consuming autotrophy and CO2-producing heterotrophy in non-axenic phototrophic biofilms". PLOS ONE 16, n.º 6 (15 de junio de 2021): e0253224. http://dx.doi.org/10.1371/journal.pone.0253224.
Texto completoTesis sobre el tema "Autotrophic production"
Melville, Andrew J. y n/a. "Stable Isotope Tests of the Trophic Role of Estuarine Habitats for Fish". Griffith University. School of Environmental and Applied Science, 2005. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20060824.144508.
Texto completoMelville, Andrew J. "Stable Isotope Tests of the Trophic Role of Estuarine Habitats for Fish". Thesis, Griffith University, 2005. http://hdl.handle.net/10072/367080.
Texto completoThesis (Masters)
Master of Philosophy (MPhil)
School of Environmental and Applied Science
Full Text
Ferguson, April A. "Autotrophic and heterotrophic bacterial carbon production in two temperate lakes with contrasting food web structure". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ33481.pdf.
Texto completoRackliffe, Daniel Riley. "Spatial Heterogeneity of Ecosystem Metabolism in a Shallow Wetland". BYU ScholarsArchive, 2014. https://scholarsarchive.byu.edu/etd/5757.
Texto completoDegrenne, Benoît. "Production d'hydrogène par Chlamydomonas reinhardtii en photobioréacteur : analyse des conditions de culture et mise en place d'un protocole autotrophe". Nantes, 2009. http://www.theses.fr/2009NANT2031.
Texto completoHydrogen production by microalgae seems to be interesting in the context of clean hydrogen production. The unicellular green algae Chlamydomonas reinhardtii is indeed able to produce photo synthetically hydrogen gas from water. Hydrogen production, due to the presence of an enzyme [Fe]-hydrogenase, is inhibited in the presence of oxygen. The protocol of sulphur deprivation developped by Melis et al. (2000), allows to time separate the production of oxygen during the algae growth and the production of hydrogen in anaerobic conditions in the presence of light. The aim was here to better understand the role of culture conditions on H2 production process, and to develop new protocols using high control allowed in photobioreactor. The study of the growth of Chlamydomonas reinhardtii shows that anaerobic conditions occur when a dark area, characterized by the illuminated fraction appears in the reactor. This value has been estimated in mixotrophic condition (γ -1) and in autotrophic conditions (γ= 0. 18). Thus has allowed to develop a protocol that permit to reach anoxia and hydrogen production under light conditions without mineral starvation, based on the control of radiative light transfer inside the photobioreactor. The optimization of standard sulphur deprived protocol by using modelling tool allowed to develop this protocol in autotrophic conditions. The maximal hydrogen productivity is similar (1,9 ml H2/gl) even if different initial conditions are applied. Finally, the photobioreactor was used to decouple metabolic pathways leading to hydrogen production. A methodology based on culture chemostat mode, with or without limitation mineral, allows regulating starch content and the concentration of biomass all in a reversible manner. The result shows that the protocol of sulphur deprivation is still the most effective compared to other protocols based on other mineral limitations
Fukaï, Eri. "Importance du picoplancton autotrophe dans la biomasse et la production primaire des eaux marines oligotrophes : Atlantique tropical oriental et mer des Sargasses". Paris 6, 1991. http://www.theses.fr/1991PA066491.
Texto completoGlé, Corine. "Structure et dynamique des communautés microbiennes autotrophes et production primaire planctonique dans une lagune côtière macrotidale, le Bassin d'Arcachon : facteurs de contrôle de type bottom-up". Bordeaux 1, 2007. http://www.theses.fr/2007BOR13556.
Texto completoSun, Cheng-Hsiung y 孫證雄. "Production and supercritical fluid extraction of lutein from Scenedesmus obliquus in an autotrophical cultivation". Thesis, 2011. http://ndltd.ncl.edu.tw/handle/41212115888761825766.
Texto completo東海大學
化學工程與材料工程學系
99
In recent years, because the algae have a carbon reduction capacity, high lipid content and rich nutrient ingredients, it gradually attracted much attention. In this study, we explore three research directions by the cultivation of microalgae: (1) the effect of Scenedesmus obliquus concentration and lutein content by changing the environment or the medium composition. The results of this study indicate that an increase in CO2 percentage to 2% and light intensity to 1600 μmolm-2s-1 can enhance Scenedesmus obliquus growth to a maximum of 2.45 g/L and 2.46 g/L; salt will result in the phenomenon of cell growth retardation; methylene blue added will not have any impact. As for the effect of lutein content, 2% carbon dioxide and 1600 μmolm-2s-1 light intensity can increase to 0.40% dw and 0.47% dw; salt and methylene blue added will not cause any effect, (2) scale up experiment and explore the impact of cultivating parameters. We get a light intensity model Biomass(g/L)=0.3574*ln(modified light intensity)-4.1846, and the use of 6.0 L photoreactor verify the credibility of this equation, (3) the ability of supercritical fluid extraction whether to replace the traditional organic solvent extraction method of the possibilities. In this study, the supercritical fluid extraction of lutein is divided into four parts: (a) pressure, (b) temperature, (c) co-solvent type, (d) the optimum amount of co-solvent. The results showed that the increase of pressure and temperature in the SFE operation enhances the lutein recovery yield. However, the enhancement resulting from the increase of temperature and pressure is not significant as compared to the yield from the conventional methanol extraction method. In addition, the increase of temperature leads to them increased impurity observed in the HPLC profile. To further enhance the lutein recovery yield, the addition of a co-solvent in SFE is performed. Of the five solvent powders investigated, ethanol is regarded as the optimum co-solvent for use in lutein extraction. The optimum amount of ethanol to be added in the SFE operation is determined. The best lutein recovery yield obtained is 76.2% (as compared to the conventional methanol extraction method) under the conditions of 400 bar, 70℃ and with ethanol as the co-solvent being added at 0.629 ml/min.
Chiang, Wei-Cheng y 江偉誠. "The Autotrophical Cultivation Of Scenedesmus Obliquus In Continuous And The Optimization Of Lutein Production By Supercritical Fluid Extraction". Thesis, 2012. http://ndltd.ncl.edu.tw/handle/28509080438702920587.
Texto completo東海大學
化學工程與材料工程學系
100
Due to the depletion of energy and greenhouse effect recently, the applications of microalgae are getting important. Microalgae are organism with high growing rate, rich in fat contents and nutritional components. Also, it has great impact on water purifying. In this research, we investigate the following aspect by cultivating the microalgae: (1) Investigate the impact on the concentration of Scenedesmus obliquus and lutein content by changing the environment or the medium compositions. The result showed us that adding pressure would delay the growing of S. obliquus cells; the growing of algae could be significantly inhibited by continuous irradiating of ultraviolet UV-A; addition of phenol would inhibit the growth of algal cells; with different colors lighting experiment, culturing with white light earned the maximum concentration to S. obliquus to 2.45 g/L. As the study on the effect on lutein, illuminating ultraviolet UV-A in the last two days could increase the lutein content to 0.48%, while adding phenol and exerting pressure had less impact on lutein content. (2) Investigate the effect on the S. obliquus by cultivated by 20.0 L bio-photoreactor and continuous cultivation. The result showed that using the aeration of 0.1 vvm cultivation, the S. obliquus concentration could increase to 1.22 g/L. Apply with different aerations (vvm) do not show obvious effect on the growing of algal cells; with repeated- batch cultivation, at 0.1 vvm, under different dilution ratio for 21 days, the productivities obtain are about 0.134 g/L/day; with continuous cultivation, we study the effect of different hydraulic retention time (HRT), and in the HRT of 4.44 day, we obtain the maximum productivity, which is 0.134 g/L/day. (3) Investigate the optimal condition for extraction of lutein in S. obliquus with supercritical carbon dioxide. Applying of central composite design (CCD) to explore three factors: (a) pressure of 200 to 400 bar, (b) temperature of 40~80 ℃, (c) addition of co-solvent (ethanol) 20-50%. Results implied that, designed the experiment by response surface methodology (RSM), the largest extreme value of regression is obtained. While setting Co-solvent=50%, P=276.8 bar and T=70.1 ℃, we can obtain the lutein yield ratio up to 89.8%, compared with traditional extraction.
van, Straaten Oliver. "Drought effects on soil carbon dioxide efflux in two ecosystems in Central Sulawesi, Indonesia". Doctoral thesis, 2010. http://hdl.handle.net/11858/00-1735-0000-0006-B136-8.
Texto completoCapítulos de libros sobre el tema "Autotrophic production"
Rizzetto, F. y F. L. Hooimeijer. "Reloading Landscapes: Democratic and Autotrophic Landscape of Taranto". En Regenerative Territories, 267–80. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-78536-9_17.
Texto completoGu, Ji-Dong y Yoko Katayama. "Microbiota and Biochemical Processes Involved in Biodeterioration of Cultural Heritage and Protection". En Microorganisms in the Deterioration and Preservation of Cultural Heritage, 37–58. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69411-1_2.
Texto completoNiizawa, Ignacio, Brenda Y. Espinaco, Susana E. Zorrilla y Guillermo A. Sihufe. "Astaxanthin production by autotrophic cultivation of Haematococcus pluvialis: A success story". En Global Perspectives on Astaxanthin, 71–89. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-823304-7.00005-2.
Texto completo"Nutrients in Salmonid Ecosystems: Sustaining Production and Biodiversity". En Nutrients in Salmonid Ecosystems: Sustaining Production and Biodiversity, editado por Megan S. Sterling y Kenneth I. Ashley. American Fisheries Society, 2003. http://dx.doi.org/10.47886/9781888569445.ch17.
Texto completoJi, Xuan, Luke Webster, Taylor J. Wass y Peer M. Schenk. "Cultivation Techniques to Induce High-Value Nutraceuticals in Microalgae". En Algal Functional Foods and Nutraceuticals: Benefits, Opportunities, and Challenges, 29–44. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815051872122010006.
Texto completoCulver, David C. y Tanja Pipan. "Sources of Energy in Subterranean Environments". En The Biology of Caves and Other Subterranean Habitats, 24–42. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198820765.003.0002.
Texto completoSapunov, Valentin. "Real Need of the World in Food". En Advances in Environmental Engineering and Green Technologies, 1–12. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-1042-1.ch001.
Texto completoIrina Cordea, Mirela y Orsolya Borsai. "Salt and Water Stress Responses in Plants". En Plant Stress Physiology - Perspectives in Agriculture [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.101072.
Texto completoBhattacharya, Ishita. "Microalgae: An Exquisite Oil Producer". En Progress in Microalgae Research - A Path for Shaping Sustainable Futures. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.104895.
Texto completoN. Munubi, Renalda y Hieromin A. Lamtane. "Animal Waste and Agro-by-Products: Valuable Resources for Producing Fish at Low Costs in Sub-Saharan Countries". En Innovation in the Food Sector Through the Valorization of Food and Agro-Food By-Products. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.95057.
Texto completoActas de conferencias sobre el tema "Autotrophic production"
Brune, David E. "Resource Utilization in Heterotrophic Vs Autotrophic Marine Shrimp Production". En 2022 Houston, Texas July 17-20, 2022. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2022. http://dx.doi.org/10.13031/aim.202200812.
Texto completoChikaraishi, Y. "Hydrogen Isotopic Composition of Fatty Acids, Sterols, and Phytol: Autotrophic Vs. Heterotrophic Production". En 29th International Meeting on Organic Geochemistry. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201902871.
Texto completoBeauchamp, S., J. Kerekes y R. Tordon. "Optical Properties and Autotrophic Production in Inland Waters in Atlantic Canada With Reference to Research Diving". En OCEANS '87. IEEE, 1987. http://dx.doi.org/10.1109/oceans.1987.1160746.
Texto completoMorais, K. C. C., J. V. C. Vargas, A. B. Mariano, J. C. Ordonez y V. Kava. "Sustainable energy via biodiesel production from autotrophic and mixotrophic growth of the microalga Phaeodactylum tricornutum in compact photobioreactors". En 2016 IEEE Conference on Technologies for Sustainability (SusTech). IEEE, 2016. http://dx.doi.org/10.1109/sustech.2016.7897177.
Texto completoAhmadi, Vafa y Carlos Dinamarca. "Simulation of the Effect of Local Electric Potential and Substrate Concentration on CO2 Reduction via Microbial Electrosynthesis". En 63rd International Conference of Scandinavian Simulation Society, SIMS 2022, Trondheim, Norway, September 20-21, 2022. Linköping University Electronic Press, 2022. http://dx.doi.org/10.3384/ecp192006.
Texto completo