Literatura académica sobre el tema "Autonomous Transformable Marine Robot"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Autonomous Transformable Marine Robot".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Autonomous Transformable Marine Robot"
Woolley, Robert, Jon Timmis y Andy M. Tyrrell. "Cylindabot: Transformable Wheg Robot Traversing Stepped and Sloped Environments". Robotics 10, n.º 3 (30 de agosto de 2021): 104. http://dx.doi.org/10.3390/robotics10030104.
Texto completoKim, Hyun-Sik, Hyung-Joo Kang, Youn-Jae Ham y Seung-Soo Park. "Development of Underwater-type Autonomous Marine Robot-kit". Journal of Korean Institute of Intelligent Systems 22, n.º 3 (25 de junio de 2012): 312–18. http://dx.doi.org/10.5391/jkiis.2012.22.3.312.
Texto completoJeong, Jinseok, Youngmin Sa y Hyun-Sik Kim. "Development of Autonomous Surface Robot for Marine Fire Safety". Journal of Ocean Engineering and Technology 32, n.º 2 (30 de abril de 2018): 138–42. http://dx.doi.org/10.26748/ksoe.2018.4.32.2.138.
Texto completoGurenko, Boris, Roman Fedorenko, Maksim Beresnev y Roman Saprykin. "Development of Simulator for Intelligent Autonomous Underwater Vehicle". Applied Mechanics and Materials 799-800 (octubre de 2015): 1001–5. http://dx.doi.org/10.4028/www.scientific.net/amm.799-800.1001.
Texto completoAnto, Adhy Febry y Totok Sukardiyono. "Prototype Autonomous Rover Pembersih Sampah Pantai menggunakan ArduPilot". Elinvo (Electronics, Informatics, and Vocational Education) 4, n.º 2 (13 de diciembre de 2019): 202–9. http://dx.doi.org/10.21831/elinvo.v4i2.28793.
Texto completoBonin-Font, Francisco y Antoni Burguera. "Towards Multi-Robot Visual Graph-SLAM for Autonomous Marine Vehicles". Journal of Marine Science and Engineering 8, n.º 6 (14 de junio de 2020): 437. http://dx.doi.org/10.3390/jmse8060437.
Texto completoMolina-Molina, J. Carlos, Marouane Salhaoui, Antonio Guerrero-González y Mounir Arioua. "Autonomous Marine Robot Based on AI Recognition for Permanent Surveillance in Marine Protected Areas". Sensors 21, n.º 8 (10 de abril de 2021): 2664. http://dx.doi.org/10.3390/s21082664.
Texto completoMellinger, David K., Holger Klinck, Neil M. Bogue, Jim Luby, Haru Matsumoto y Roland Stelzer. "Gliders, floats, and robot sailboats: autonomous platforms for marine mammal research". Journal of the Acoustical Society of America 131, n.º 4 (abril de 2012): 3493. http://dx.doi.org/10.1121/1.4709197.
Texto completoPan, Lisheng. "Exploration and Mining Learning Robot of Autonomous Marine Resources Based on Adaptive Neural Network Controller". Polish Maritime Research 25, s3 (1 de diciembre de 2018): 78–83. http://dx.doi.org/10.2478/pomr-2018-0115.
Texto completoAhmed, Mohammed, Markus Eich y Felix Bernhard. "Design and Control of MIRA: A Lightweight Climbing Robot for Ship Inspection". International Letters of Chemistry, Physics and Astronomy 55 (julio de 2015): 128–35. http://dx.doi.org/10.18052/www.scipress.com/ilcpa.55.128.
Texto completoTesis sobre el tema "Autonomous Transformable Marine Robot"
Bazeille, Stéphane. "Vision sous-marine monoculaire pour la reconnaissance d'objets". Brest, 2008. http://www.theses.fr/2008BRES2023.
Texto completoIn underwater context, traditional sensing methods like sonar are used at large range for detection and classification of objects. For a few years, the sonar sensor has been complemented by a vision sensor more efficient at short range for the approach, the object recognition and the intervention phases. Indeed, the camera has noticeable advantages like for example high resolution, simple interpretation or low cost. Today, it equips nearly any scientific, industrial or military underwater vehicles. Currently, underwater vehicles are rather distance controlled by a manipulator, and automatic processing is really uncommon. However, automatic processing is an essential technology for the AUV development. These kinds of vehicles are very popular today with the expansion of the market related to the security and the exploitation of the marine resources. This thesis aims at supplying the required advances and promoting the use of video technologies. The proposed study addresses the problem of automatic processing for underwater objects recognition, with a particular focus on man-made objects. Observed underwater scenes are traditionally simpler but more limited in depth than urban scenes or inside building scenes. Nevertheless, this context presents very specific difficulties like lighting variations and water turbidity which limit visibility and degrade considerably images. As a consequence processing is difflcult and require the development of new robotic vision algorithms
Pagliai, Marco. "Design and testing of innovative thrusters and their integration in the design of a reconfigurable underwater vehicle". Doctoral thesis, 2019. http://hdl.handle.net/2158/1154277.
Texto completo"Coordinated Navigation and Localization of an Autonomous Underwater Vehicle Using an Autonomous Surface Vehicle in the OpenUAV Simulation Framework". Master's thesis, 2020. http://hdl.handle.net/2286/R.I.62789.
Texto completoDissertation/Thesis
Masters Thesis Computer Science 2020
Lu, Yimeng. "A Game-theoretical Approach for Distributed Cooperative Control of Autonomous Underwater Vehicles". Thesis, 2018. http://hdl.handle.net/10754/627955.
Texto completoLibros sobre el tema "Autonomous Transformable Marine Robot"
Marine Robot Autonomy. Springer, 2012.
Buscar texto completoCapítulos de libros sobre el tema "Autonomous Transformable Marine Robot"
Paull, Liam, Sajad Saeedi y Howard Li. "Path Planning for Autonomous Underwater Vehicles". En Marine Robot Autonomy, 177–223. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5659-9_4.
Texto completoLane, David, Keith Brown, Yvan Petillot, Emilio Miguelanez y Pedro Patron. "An Ontology-Based Approach to Fault Tolerant Mission Execution for Autonomous Platforms". En Marine Robot Autonomy, 225–55. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-5659-9_5.
Texto completoNovitzky, Michael, Hugh R. R. Dougherty y Michael R. Benjamin. "A Human-Robot Speech Interface for an Autonomous Marine Teammate". En Social Robotics, 513–20. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47437-3_50.
Texto completoValada, A., P. Velagapudi, B. Kannan, C. Tomaszewski, G. Kantor y P. Scerri. "Development of a Low Cost Multi-Robot Autonomous Marine Surface Platform". En Springer Tracts in Advanced Robotics, 643–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40686-7_43.
Texto completoSchmitt, Silke, Fabrice Le Bars, Luc Jaulin y Thomas Latzel. "Obstacle Avoidance for an Autonomous Marine Robot—A Vector Field Approach". En Quantitative Monitoring of the Underwater Environment, 119–31. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32107-3_11.
Texto completoChoyekh, Mahdi, Naomi Kato, Yasuaki Yamaguchi, Ryan Dewantara, Hajime Chiba, Hidetaka Senga, Muneo Yoshie, Toshinari Tanaka, Eiichi Kobayashi y Timothy Short. "Development and Operation of Underwater Robot for Autonomous Tracking and Monitoring of Subsea Plumes After Oil Spill and Gas Leak from Seabed and Analyses of Measured Data". En Applications to Marine Disaster Prevention, 17–93. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-55991-7_3.
Texto completoKapetanović, Nadir, Antonio Vasilijević y Krunoslav Zubčić. "Assessing the Current State of a Shipwreck Using an Autonomous Marine Robot: Szent Istvan Case Study". En Distributed Computing and Artificial Intelligence, Special Sessions, 17th International Conference, 126–35. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53829-3_12.
Texto completoActas de conferencias sobre el tema "Autonomous Transformable Marine Robot"
Maurelli, Francesco, Zeyn Saigol, Carlos C. Insaurralde, Yvan R. Petillot y David M. Lane. "Marine world representation and acoustic communication: Challenges for multi-robot collaboration". En 2012 IEEE/OES Autonomous Underwater Vehicles (AUV). IEEE, 2012. http://dx.doi.org/10.1109/auv.2012.6380755.
Texto completoHan, Changlin, Yiyao Xu, Xiaohong Xu, Zhiwen Zeng, Huimin Lu y Zongtan Zhou. "Remote Control and Autonomous Driving: The System-wide Design of a Wheel-track Transformable Robot –– Kylin Blaster". En 2018 Chinese Automation Congress (CAC). IEEE, 2018. http://dx.doi.org/10.1109/cac.2018.8623389.
Texto completoKiselev, L. V., A. V. Medvedev, V. B. Kostousov y A. E. Tarkhanov. "Autonomous underwater robot as an ideal platform for marine gravity surveys". En 2017 24th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS). IEEE, 2017. http://dx.doi.org/10.23919/icins.2017.7995685.
Texto completoSoares, Ines, Sara Sa, Joao Morais y Joao Fortuna. "Obstacle Avoiding Path Planning Pipeline for Marine Surface Vessels". En 2022 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC). IEEE, 2022. http://dx.doi.org/10.1109/icarsc55462.2022.9784810.
Texto completo"Exploring the Blue Frontier with Cooperative Marine Robots: Theory and Practice". En 2020 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC). IEEE, 2020. http://dx.doi.org/10.1109/icarsc49921.2020.9096122.
Texto completoUeland, Einar S., Roger Skjetne y Andreas R. Dahl. "Marine Autonomous Exploration Using a Lidar and SLAM". En ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/omae2017-61880.
Texto completoManderson, Travis y Gregory Dudek. "GPU-Assisted Learning on an Autonomous Marine Robot for Vision-Based Navigation and Image Understanding". En OCEANS 2018 MTS/IEEE Charleston. IEEE, 2018. http://dx.doi.org/10.1109/oceans.2018.8604645.
Texto completoBennett, Andrew, Victoria Preston, Jay Woo, Shivali Chandra, Devynn Diggins, Riley Chapman, Zhecan Wang et al. "Autonomous vehicles for remote sample collection in difficult conditions: Enabling remote sample collection by marine biologists". En 2015 IEEE International Conference on Technologies for Practical robot Applications (TePRA). IEEE, 2015. http://dx.doi.org/10.1109/tepra.2015.7219660.
Texto completoZhang, Peihao, Jiawang Chen, Zhenwei Tian, ZiQiang Ren, Yongqiang Ge, Qiaoling Gao y Feng Gao. "A New Type of Robot Used for Deep Stratum Drilling in Seabed". En ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/omae2020-18401.
Texto completoInformes sobre el tema "Autonomous Transformable Marine Robot"
Barbie, Alexander. ARCHES Digital Twin Framework. GEOMAR, diciembre de 2022. http://dx.doi.org/10.3289/sw_arches_core_1.0.0.
Texto completo