Literatura académica sobre el tema "Autonomous Reconfigurable Vehicle"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Autonomous Reconfigurable Vehicle".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Autonomous Reconfigurable Vehicle"
Topini, Edoardo, Marco Pagliai y Benedetto Allotta. "Dynamic Maneuverability Analysis: A Preliminary Application on an Autonomous Underwater Reconfigurable Vehicle". Applied Sciences 11, n.º 10 (14 de mayo de 2021): 4469. http://dx.doi.org/10.3390/app11104469.
Texto completoKnapik, Dawid, Krzysztof Kołek, Maciej Rosół y Andrzej Turnau. "Autonomous, reconfigurable mobile vehicle with rapid control prototyping functionality". IFAC-PapersOnLine 52, n.º 8 (2019): 13–18. http://dx.doi.org/10.1016/j.ifacol.2019.08.041.
Texto completoKoju, Surya Man y Nikil Thapa. "FPGA Based Vehicle to Vehicle Communication in Spartan 3E". Journal of Science and Engineering 8 (12 de noviembre de 2020): 14–21. http://dx.doi.org/10.3126/jsce.v8i0.32858.
Texto completoDe Novi, G., C. Melchiorri, J. C. Garcia, P. J. Sanz, P. Ridao y G. Oliver. "New approach for a Reconfigurable Autonomous Underwater Vehicle for Intervention". IEEE Aerospace and Electronic Systems Magazine 25, n.º 11 (noviembre de 2010): 32–36. http://dx.doi.org/10.1109/maes.2010.5638803.
Texto completoHigashi, Toshimitsu, Kosuke Sekiyama y Toshio Fukuda. "Autonomous Formation of Transportation Order under Dynamical Environment". Journal of Robotics and Mechatronics 12, n.º 4 (20 de agosto de 2000): 494–500. http://dx.doi.org/10.20965/jrm.2000.p0494.
Texto completoKatebi, M. R. y M. J. Grimble. "Integrated control, guidance and diagnosis for reconfigurable autonomous underwater vehicle control". International Journal of Systems Science 30, n.º 9 (enero de 1999): 1021–32. http://dx.doi.org/10.1080/002077299291886.
Texto completoHemmati, Maryam, Morteza Biglari-Abhari y Smail Niar. "Adaptive Real-Time Object Detection for Autonomous Driving Systems". Journal of Imaging 8, n.º 4 (11 de abril de 2022): 106. http://dx.doi.org/10.3390/jimaging8040106.
Texto completoPugi, Luca, Marco Pagliai y Benedetto Allotta. "A robust propulsion layout for underwater vehicles with enhanced manoeuvrability and reliability features". Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment 232, n.º 3 (26 de marzo de 2017): 358–76. http://dx.doi.org/10.1177/1475090217696569.
Texto completoCantelli, Bonaccorso, Longo, Melita, Schillaci y Muscato. "A Small Versatile Electrical Robot for Autonomous Spraying in Agriculture". AgriEngineering 1, n.º 3 (6 de agosto de 2019): 391–402. http://dx.doi.org/10.3390/agriengineering1030029.
Texto completoGlas, Benjamin, Oliver Sander, Vitali Stuckert, Klaus D. Müller-Glaser y Jürgen Becker. "Prime Field ECDSA Signature Processing for Reconfigurable Embedded Systems". International Journal of Reconfigurable Computing 2011 (2011): 1–12. http://dx.doi.org/10.1155/2011/836460.
Texto completoTesis sobre el tema "Autonomous Reconfigurable Vehicle"
Hurd, Carter J. "Design of Reconfigurable Interior for Autonomous Vehicle Prototype". The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1531224108072119.
Texto completoGheneti, Banti Henricus. "Reconfigurable Autonomous Surface Vehicles : perception and trajectory optimization algorithms". Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/121672.
Texto completoThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 105-110).
Autonomous Surface Vehicles (ASV) are a highly active area of robotics with many ongoing projects in search and rescue, environmental surveying, monitoring, and beyond. There have been significant studies on ASVs in riverine, coastal, and sea environments, yet only limited research on urban waterways, one of the most busy and important water environments. This thesis presents an Urban Autonomy System that is able to meet the critical precision, real-time and other requirements that are unique to ASVs in urban waterways. LiDAR-based perception algorithms are presented to enable robust and precise obstacle avoidance and object pose estimation on the water. Additionally, operating ASVs in well-networked urban waterways creates many potential use cases for ASVs to serve as re-configurable urban infrastructure, but this necessitates developing novel multi-robot planners for urban ASV operations. Efficient sequential quadratic programming and real-time B-spline parameterized mixed-integer quadratic programming multi-ASV motion planners are presented respectively for formation changing and shapeshifting operations, enabling use cases such as ASV docking and bridge-building on water. These methods increase the potential of urban and non-urban ASVs in the field. The underlying planners in turn contribute to the motion planning and trajectory optimization toolbox for unmanned aerial vehicles (UAVs), self-driving cars, and other autonomous systems.
by Banti Henricus Gheneti.
M. Eng.
M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Vega, Emanuel Pablo. "Conception orientée-tâche et optimisation de systèmes de propulsion reconfigurables pour robots sous-marins autonomes". Thesis, Brest, 2016. http://www.theses.fr/2016BRES0067/document.
Texto completoIn this PhD thesis, the optimization of the propulsion and control of AUVs is developed. The hydrodynamic model of the AUVs is examined. Additionally, AUV propulsion topologies are studied and models for fixed and vectorial technology are developed. The fixed technology model is based on an off the shelf device, while the modeled vectorial propulsive system is based on a magnetic coupling thruster prototype developed in IRDL (Institut de Recherche Dupuy de Lôme) at ENI Brest. A control method using the hydrodynamic model is studied, its adaptation to two AUV topologies is presented and considerations about its applicability will be discussed. The optimization is used to find suitable propulsive topologies and control parameters in order to execute given robotic tasks, speeding up the convergence and minimizing the energy consumption. This is done using a genetic algorithm, which is a stochastic optimization method used for task-based design.The results of the optimization can be used as a preliminary stage in the design process of an AUV, giving ideas for enhanced propulsive configurations. The optimization technique is also applied to an IRDL existing robot, modifying only some of the propulsive topology parameters in order to readily adapt it to different tasks, making the AUV dynamically reconfigurable
Dias, Mauricio Acconcia. "Sistema de hardware reconfigurável para navegação visual de veículos autônomos". Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-13012017-164142/.
Texto completoThe number of vehicular accidents have increased worldwide and the leading associated cause is the human failure. Autonomous vehicles design is gathering attention throughout the world in industry and universities. Several research groups in the world are designing autonomous vehicles or driving assistance systems with the main goal of providing means to avoid these accidents. Autonomous vehicles navigation systems need to be reliable with real-time performance which requires the design of specific solutions to solve the problem. Due to the low cost and high amount of collected information, one of the most used sensors to perform autonomous navigation (and driving assistance systems) are the cameras.Information from the environment is extracted through obtained images and then used by navigation systems. The main goal of this thesis is the design, implementation, testing and optimization of an Artificial Neural Network ensemble used in an autonomous vehicle navigation system (considering the navigation system proposed and designed in Mobile Robotics Lab (LRM)) in hardware, in order to increase its capabilites, to be used as image classifiers for robot visual navigation. The main contributions of this work are: a reconfigurable hardware that performs a fast signal propagation in a neural network ensemble consuming less energy when compared to a general purpose computer, due to the nature of the hardware device; practical results on the tradeoff between precision, hardware consumption and timing for the class of applications in question using the fixed-point representation; a automatic generator of look-up tables widely used in hardware neural networks to replace the exact calculation of activation functions; a hardware/software co-design that achieve significant results for backpropagation training algorithm implementation, and considering all presented results, a structure which allows a considerable number of future works on hardware image processing for robotics applications by implementing a functional image processing hardware system.
Pagliai, Marco. "Design and testing of innovative thrusters and their integration in the design of a reconfigurable underwater vehicle". Doctoral thesis, 2019. http://hdl.handle.net/2158/1154277.
Texto completoCapítulos de libros sobre el tema "Autonomous Reconfigurable Vehicle"
Kim, Kangsoo. "Reconfigurable Minimum-Time Autonomous Marine Vehicle Guidance in Variable Sea Currents". En Automation and Control [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.92013.
Texto completo"Reconfigurable, adaptable, multi-modality, mobile, wireless, energy-efficient, underwater sensor network of hover-capable AUVs". En Autonomous Underwater Vehicles: Design and practice, 359–87. Institution of Engineering and Technology, 2020. http://dx.doi.org/10.1049/sbra525e_ch13.
Texto completoActas de conferencias sobre el tema "Autonomous Reconfigurable Vehicle"
Pagliai, Marco, Alessandro Ridolfi, Jonathan Gelli, Alessia Meschini y Benedetto Allotta. "Design of a Reconfigurable Autonomous Underwater Vehicle for Offshore Platform Monitoring and Intervention". En 2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV). IEEE, 2018. http://dx.doi.org/10.1109/auv.2018.8729776.
Texto completoWzorek, Mariusz y Patrick Doherty. "Reconfigurable Path Planning for an Autonomous Unmanned Aerial Vehicle". En 2006 International Conference on Hybrid Information Technology. IEEE, 2006. http://dx.doi.org/10.1109/ichit.2006.253618.
Texto completoTopini, Edoardo, Gherardo Liverani, Jonathan Gelli, Cosimo Fredducci, Alberto Topini, Alessandro Ridolfi y Benedetto Allotta. "Development and Control of an Autonomous Reconfigurable Underwater Vehicle". En OCEANS 2022, Hampton Roads. IEEE, 2022. http://dx.doi.org/10.1109/oceans47191.2022.9977234.
Texto completoShoureshi, Rahmat A., Sunwook Lim y Christopher M. Aasted. "Self-Reconfigurable Control System for Autonomous Vehicles". En ASME 2013 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/dscc2013-3876.
Texto completoDe Novi, G., C. Melchiorri, J. C. Garcia, P. J. Sanz, P. Ridao y G. Oliver. "A new approach for a Reconfigurable Autonomous Underwater Vehicle for Intervention". En 2009 3rd Annual IEEE Systems Conference. IEEE, 2009. http://dx.doi.org/10.1109/systems.2009.4815765.
Texto completoElouaret, Tarek, Sylvain Colomer, Frederic Demelo, Nicolas Cuperlier, Olivier Romain, Lounis Kessal y Stephane Zuckerman. "Implementation of a bio-inspired neural architecture for autonomous vehicle on a reconfigurable platform". En 2022 IEEE 31st International Symposium on Industrial Electronics (ISIE). IEEE, 2022. http://dx.doi.org/10.1109/isie51582.2022.9831562.
Texto completoFang, Shihong y Anna Choromanska. "Reconfigurable Network for Efficient Inferencing in Autonomous Vehicles". En 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019. http://dx.doi.org/10.1109/icra.2019.8794064.
Texto completoHodel, Alan y Ronnie Callahan. "Autonomous Reconfigurable Control Allocation (ARCA) for Reusable Launch Vehicles". En AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-4777.
Texto completoSchmitz, Derek, Vijayakumar Janardhan y S. Balakrishnan. "Implementation of Nonlinear Reconfigurable Controllers for Autonomous Unmanned Vehicles". En 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-348.
Texto completoGong, Zheng, Wuyang Xue, Ziang Liu, Yimo Zhao, Ruihang Miao, Rendong Ying y Peilin Liu. "Design of a Reconfigurable Multi-Sensor Testbed for Autonomous Vehicles and Ground Robots". En 2019 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2019. http://dx.doi.org/10.1109/iscas.2019.8702610.
Texto completo