Artículos de revistas sobre el tema "Autonomous and highly oscillatory differential equations"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Autonomous and highly oscillatory differential equations".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
DAVIDSON, B. D. y D. E. STEWART. "A NUMERICAL HOMOTOPY METHOD AND INVESTIGATIONS OF A SPRING-MASS SYSTEM". Mathematical Models and Methods in Applied Sciences 03, n.º 03 (junio de 1993): 395–416. http://dx.doi.org/10.1142/s0218202593000217.
Texto completoPhilos, Ch G., I. K. Purnaras y Y. G. Sficas. "ON THE BEHAVIOUR OF THE OSCILLATORY SOLUTIONS OF SECOND-ORDER LINEAR UNSTABLE TYPE DELAY DIFFERENTIAL EQUATIONS". Proceedings of the Edinburgh Mathematical Society 48, n.º 2 (23 de mayo de 2005): 485–98. http://dx.doi.org/10.1017/s0013091503000993.
Texto completoOgorodnikova, S. y F. Sadyrbaev. "MULTIPLE SOLUTIONS OF NONLINEAR BOUNDARY VALUE PROBLEMS WITH OSCILLATORY SOLUTIONS". Mathematical Modelling and Analysis 11, n.º 4 (31 de diciembre de 2006): 413–26. http://dx.doi.org/10.3846/13926292.2006.9637328.
Texto completoCondon, Marissa, Alfredo Deaño y Arieh Iserles. "On second-order differential equations with highly oscillatory forcing terms". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466, n.º 2118 (13 de enero de 2010): 1809–28. http://dx.doi.org/10.1098/rspa.2009.0481.
Texto completoSanz-Serna, J. M. "Mollified Impulse Methods for Highly Oscillatory Differential Equations". SIAM Journal on Numerical Analysis 46, n.º 2 (enero de 2008): 1040–59. http://dx.doi.org/10.1137/070681636.
Texto completoPetzold, Linda R., Laurent O. Jay y Jeng Yen. "Numerical solution of highly oscillatory ordinary differential equations". Acta Numerica 6 (enero de 1997): 437–83. http://dx.doi.org/10.1017/s0962492900002750.
Texto completoCohen, David, Ernst Hairer y Christian Lubich. "Modulated Fourier Expansions of Highly Oscillatory Differential Equations". Foundations of Computational Mathematics 3, n.º 4 (1 de octubre de 2003): 327–45. http://dx.doi.org/10.1007/s10208-002-0062-x.
Texto completoCondon, M., A. Iserles y S. P. Nørsett. "Differential equations with general highly oscillatory forcing terms". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, n.º 2161 (8 de enero de 2014): 20130490. http://dx.doi.org/10.1098/rspa.2013.0490.
Texto completoHerrmann, L. "Oscillatory Solutions of Some Autonomous Partial Differential Equations with a Parameter". Journal of Mathematical Sciences 236, n.º 3 (1 de diciembre de 2018): 367–75. http://dx.doi.org/10.1007/s10958-018-4117-1.
Texto completoChartier, Philippe, Joseba Makazaga, Ander Murua y Gilles Vilmart. "Multi-revolution composition methods for highly oscillatory differential equations". Numerische Mathematik 128, n.º 1 (17 de enero de 2014): 167–92. http://dx.doi.org/10.1007/s00211-013-0602-0.
Texto completoLanets, O. S., V. T. Dmytriv, V. M. Borovets, I. A. Derevenko y I. M. Horodetskyy. "Analytical Model of the Two-Mass Above Resonance System of the Eccentric-Pendulum Type Vibration Table". International Journal of Applied Mechanics and Engineering 25, n.º 4 (1 de diciembre de 2020): 116–29. http://dx.doi.org/10.2478/ijame-2020-0053.
Texto completoCondon, Marissa, Alfredo Deaño, Arieh Iserles y Karolina Kropielnicka. "Efficient computation of delay differential equations with highly oscillatory terms". ESAIM: Mathematical Modelling and Numerical Analysis 46, n.º 6 (19 de abril de 2012): 1407–20. http://dx.doi.org/10.1051/m2an/2012004.
Texto completoMahdavi, Ashkan, Sheng-Wei Chi y Negar Kamali. "Harmonic-Enriched Reproducing Kernel Approximation for Highly Oscillatory Differential Equations". Journal of Engineering Mechanics 146, n.º 4 (abril de 2020): 04020014. http://dx.doi.org/10.1061/(asce)em.1943-7889.0001727.
Texto completoIserles, Arieh. "Think globally, act locally: Solving highly-oscillatory ordinary differential equations". Applied Numerical Mathematics 43, n.º 1-2 (octubre de 2002): 145–60. http://dx.doi.org/10.1016/s0168-9274(02)00122-8.
Texto completoLiu, Zhongli, Tianhai Tian y Hongjiong Tian. "Asymptotic-numerical solvers for highly oscillatory second-order differential equations". Applied Numerical Mathematics 137 (marzo de 2019): 184–202. http://dx.doi.org/10.1016/j.apnum.2018.11.004.
Texto completoSanz-Serna, J. M. y Beibei Zhu. "Word series high-order averaging of highly oscillatory differential equations with delay". Applied Mathematics and Nonlinear Sciences 4, n.º 2 (20 de diciembre de 2019): 445–54. http://dx.doi.org/10.2478/amns.2019.2.00042.
Texto completoAriel, Gil, Bjorn Engquist y Richard Tsai. "A multiscale method for highly oscillatory ordinary differential equations with resonance". Mathematics of Computation 78, n.º 266 (3 de octubre de 2008): 929–56. http://dx.doi.org/10.1090/s0025-5718-08-02139-x.
Texto completoLiu, Wensheng. "Averaging Theorems for Highly Oscillatory Differential Equations and Iterated Lie Brackets". SIAM Journal on Control and Optimization 35, n.º 6 (noviembre de 1997): 1989–2020. http://dx.doi.org/10.1137/s0363012994268667.
Texto completoJohn, Sabo y Pius Tumba. "The Efficiency of Block Hybrid Method for Solving Malthusian Growth Model and Prothero-Robinson Oscillatory Differential Equations". International Journal of Development Mathematics (IJDM) 1, n.º 3 (9 de septiembre de 2024): 008–22. http://dx.doi.org/10.62054/ijdm/0103.02.
Texto completoSAIRA y Wen-Xiu Ma. "An Approximation Method to Compute Highly Oscillatory Singular Fredholm Integro-Differential Equations". Mathematics 10, n.º 19 (4 de octubre de 2022): 3628. http://dx.doi.org/10.3390/math10193628.
Texto completoZaman, Sakhi, Latif Ullah Khan, Irshad Hussain y Lucian Mihet-Popa. "Fast Computation of Highly Oscillatory ODE Problems: Applications in High-Frequency Communication Circuits". Symmetry 14, n.º 1 (9 de enero de 2022): 115. http://dx.doi.org/10.3390/sym14010115.
Texto completoSanz-Serna, J. M. y Beibei Zhu. "A stroboscopic averaging algorithm for highly oscillatory delay problems". IMA Journal of Numerical Analysis 39, n.º 3 (13 de abril de 2018): 1110–33. http://dx.doi.org/10.1093/imanum/dry020.
Texto completoDizicheh, A. Karimi, F. Ismail, M. Tavassoli Kajani y Mohammad Maleki. "A Legendre Wavelet Spectral Collocation Method for Solving Oscillatory Initial Value Problems". Journal of Applied Mathematics 2013 (2013): 1–5. http://dx.doi.org/10.1155/2013/591636.
Texto completoBao, W. "Uniformly Accurate Multiscale Time Integrators for Highly Oscillatory Second Order Differential Equations". Journal of Mathematical Study 47, n.º 2 (junio de 2014): 111–50. http://dx.doi.org/10.4208/jms.v47n2.14.01.
Texto completoLiu, Zhongli, Hongjiong Tian y Xiong You. "Adiabatic Filon-type methods for highly oscillatory second-order ordinary differential equations". Journal of Computational and Applied Mathematics 320 (agosto de 2017): 1–14. http://dx.doi.org/10.1016/j.cam.2017.01.028.
Texto completoBlanes, Sergio, Fernando Casas y Ander Murua. "Splitting methods for differential equations". Acta Numerica 33 (julio de 2024): 1–161. http://dx.doi.org/10.1017/s0962492923000077.
Texto completoBayly, Philip V., Larry A. Taber y Anders E. Carlsson. "Damped and persistent oscillations in a simple model of cell crawling". Journal of The Royal Society Interface 9, n.º 71 (26 de octubre de 2011): 1241–53. http://dx.doi.org/10.1098/rsif.2011.0627.
Texto completoLovetskiy, Konstantin P., Leonid A. Sevastianov, Michal Hnatič y Dmitry S. Kulyabov. "Numerical Integration of Highly Oscillatory Functions with and without Stationary Points". Mathematics 12, n.º 2 (17 de enero de 2024): 307. http://dx.doi.org/10.3390/math12020307.
Texto completoBanshchikov, A. V., A. V. Lakeev y V. A. Rusanov. "On polylinear differential realization of the determined dynamic chaos in the class of higher order equations with delay". Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, n.º 10 (26 de octubre de 2023): 3–21. http://dx.doi.org/10.26907/0021-3446-2023-10-3-21.
Texto completoLorenz, Katina, Tobias Jahnke y Christian Lubich. "Adiabatic Integrators for Highly Oscillatory Second-Order Linear Differential Equations with Time-Varying Eigendecomposition". BIT Numerical Mathematics 45, n.º 1 (marzo de 2005): 91–115. http://dx.doi.org/10.1007/s10543-005-2637-9.
Texto completoWang, Bin y Xinyuan Wu. "Improved Filon-type asymptotic methods for highly oscillatory differential equations with multiple time scales". Journal of Computational Physics 276 (noviembre de 2014): 62–73. http://dx.doi.org/10.1016/j.jcp.2014.07.035.
Texto completoBuchholz, Simone, Ludwig Gauckler, Volker Grimm, Marlis Hochbruck y Tobias Jahnke. "Closing the gap between trigonometric integrators and splitting methods for highly oscillatory differential equations". IMA Journal of Numerical Analysis 38, n.º 1 (9 de marzo de 2017): 57–74. http://dx.doi.org/10.1093/imanum/drx007.
Texto completoFox, B., L. S. Jennings y A. Y. Zomaya. "Numerical Computation of Differential-Algebraic Equations for Non-Linear Dynamics of Multibody Systems Involving Contact Forces". Journal of Mechanical Design 123, n.º 2 (1 de marzo de 1999): 272–81. http://dx.doi.org/10.1115/1.1353587.
Texto completoPhilos, Ch G., I. K. Purnaras y Y. G. Sficas. "Asymptotic Decay of the Oscillatory Solutions to First Order Non-Autonomous Linear Unstable Type Delay Differential Equations". Funkcialaj Ekvacioj 49, n.º 3 (2006): 385–413. http://dx.doi.org/10.1619/fesi.49.385.
Texto completoCrouseilles, Nicolas, Shi Jin y Mohammed Lemou. "Nonlinear geometric optics method-based multi-scale numerical schemes for a class of highly oscillatory transport equations". Mathematical Models and Methods in Applied Sciences 27, n.º 11 (30 de agosto de 2017): 2031–70. http://dx.doi.org/10.1142/s0218202517500385.
Texto completoO’NEALE, DION R. J. y ROBERT I. MCLACHLAN. "RECONSIDERING TRIGONOMETRIC INTEGRATORS". ANZIAM Journal 50, n.º 3 (enero de 2009): 320–32. http://dx.doi.org/10.1017/s1446181109000042.
Texto completoHan, Houde y Zhongyi Huang. "The Tailored Finite Point Method". Computational Methods in Applied Mathematics 14, n.º 3 (1 de julio de 2014): 321–45. http://dx.doi.org/10.1515/cmam-2014-0012.
Texto completoBrunner, Hermann, Yunyun Ma y Yuesheng Xu. "The oscillation of solutions of Volterra integral and integro-differential equations with highly oscillatory kernels". Journal of Integral Equations and Applications 27, n.º 4 (diciembre de 2015): 455–87. http://dx.doi.org/10.1216/jie-2015-27-4-455.
Texto completoKhanamiryan, M. "Quadrature methods for highly oscillatory linear and nonlinear systems of ordinary differential equations: part I". BIT Numerical Mathematics 48, n.º 4 (28 de noviembre de 2008): 743–61. http://dx.doi.org/10.1007/s10543-008-0201-0.
Texto completoDenk, G. "A new numerical method for the integration of highly oscillatory second-order ordinary differential equations". Applied Numerical Mathematics 13, n.º 1-3 (septiembre de 1993): 57–67. http://dx.doi.org/10.1016/0168-9274(93)90131-a.
Texto completoSpigler, Renato. "Asymptotic-numerical approximations for highly oscillatory second-order differential equations by the phase function method". Journal of Mathematical Analysis and Applications 463, n.º 1 (julio de 2018): 318–44. http://dx.doi.org/10.1016/j.jmaa.2018.03.027.
Texto completoBayly, P. V. y S. K. Dutcher. "Steady dynein forces induce flutter instability and propagating waves in mathematical models of flagella". Journal of The Royal Society Interface 13, n.º 123 (octubre de 2016): 20160523. http://dx.doi.org/10.1098/rsif.2016.0523.
Texto completoBissembayev, Jomartov, Tuleshov y Dikambay. "Analysis of the Oscillating Motion of a Solid Body on Vibrating Bearers". Machines 7, n.º 3 (6 de septiembre de 2019): 58. http://dx.doi.org/10.3390/machines7030058.
Texto completoGong, Ya Qi, Qin Chen y Yong Feng Qi. "Solving of Partial Differential Equations by Numerical Manifold Method with Partially Overlapping Covers". Applied Mechanics and Materials 638-640 (septiembre de 2014): 1737–40. http://dx.doi.org/10.4028/www.scientific.net/amm.638-640.1737.
Texto completoChartier, Philippe, Florian Méhats, Mechthild Thalhammer y Yong Zhang. "Convergence of multi-revolution composition time-splitting methods for highly oscillatory differential equations of Schrödinger type". ESAIM: Mathematical Modelling and Numerical Analysis 51, n.º 5 (septiembre de 2017): 1859–82. http://dx.doi.org/10.1051/m2an/2017010.
Texto completoKhanamiryan, Marianna. "Quadrature methods for highly oscillatory linear and non-linear systems of ordinary differential equations: part II". BIT Numerical Mathematics 52, n.º 2 (23 de septiembre de 2011): 383–405. http://dx.doi.org/10.1007/s10543-011-0355-z.
Texto completoPhilos, Ch G., I. K. Purnaras y Y. G. Sficas. "Asymptotic behavior of the oscillatory solutions to first order non-autonomous linear neutral delay differential equations of unstable type". Mathematical and Computer Modelling 46, n.º 3-4 (agosto de 2007): 422–38. http://dx.doi.org/10.1016/j.mcm.2006.11.012.
Texto completoMarszalek, Wieslaw, Jan Sadecki y Maciej Walczak. "Computational Analysis of Ca2+ Oscillatory Bio-Signals: Two-Parameter Bifurcation Diagrams". Entropy 23, n.º 7 (8 de julio de 2021): 876. http://dx.doi.org/10.3390/e23070876.
Texto completoVilmart, Gilles. "Weak Second Order Multirevolution Composition Methods for Highly Oscillatory Stochastic Differential Equations with Additive or Multiplicative Noise". SIAM Journal on Scientific Computing 36, n.º 4 (enero de 2014): A1770—A1796. http://dx.doi.org/10.1137/130935331.
Texto completoRomanchuk, Yaroslav, Mariia Sokil y Leonid Polishchuk. "PERIODIC ATEB-FUNCTIONS AND THE VAN DER POL METHOD FOR CONSTRUCTING SOLUTIONS OF TWO-DIMENSIONAL NONLINEAR OSCILLATIONS MODELS OF ELASTIC BODIES". Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 14, n.º 3 (30 de septiembre de 2024): 15–20. http://dx.doi.org/10.35784/iapgos.6377.
Texto completo