Literatura académica sobre el tema "Autonomous and highly oscillatory differential equations"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Autonomous and highly oscillatory differential equations".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Autonomous and highly oscillatory differential equations"
DAVIDSON, B. D. y D. E. STEWART. "A NUMERICAL HOMOTOPY METHOD AND INVESTIGATIONS OF A SPRING-MASS SYSTEM". Mathematical Models and Methods in Applied Sciences 03, n.º 03 (junio de 1993): 395–416. http://dx.doi.org/10.1142/s0218202593000217.
Texto completoPhilos, Ch G., I. K. Purnaras y Y. G. Sficas. "ON THE BEHAVIOUR OF THE OSCILLATORY SOLUTIONS OF SECOND-ORDER LINEAR UNSTABLE TYPE DELAY DIFFERENTIAL EQUATIONS". Proceedings of the Edinburgh Mathematical Society 48, n.º 2 (23 de mayo de 2005): 485–98. http://dx.doi.org/10.1017/s0013091503000993.
Texto completoOgorodnikova, S. y F. Sadyrbaev. "MULTIPLE SOLUTIONS OF NONLINEAR BOUNDARY VALUE PROBLEMS WITH OSCILLATORY SOLUTIONS". Mathematical Modelling and Analysis 11, n.º 4 (31 de diciembre de 2006): 413–26. http://dx.doi.org/10.3846/13926292.2006.9637328.
Texto completoCondon, Marissa, Alfredo Deaño y Arieh Iserles. "On second-order differential equations with highly oscillatory forcing terms". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466, n.º 2118 (13 de enero de 2010): 1809–28. http://dx.doi.org/10.1098/rspa.2009.0481.
Texto completoSanz-Serna, J. M. "Mollified Impulse Methods for Highly Oscillatory Differential Equations". SIAM Journal on Numerical Analysis 46, n.º 2 (enero de 2008): 1040–59. http://dx.doi.org/10.1137/070681636.
Texto completoPetzold, Linda R., Laurent O. Jay y Jeng Yen. "Numerical solution of highly oscillatory ordinary differential equations". Acta Numerica 6 (enero de 1997): 437–83. http://dx.doi.org/10.1017/s0962492900002750.
Texto completoCohen, David, Ernst Hairer y Christian Lubich. "Modulated Fourier Expansions of Highly Oscillatory Differential Equations". Foundations of Computational Mathematics 3, n.º 4 (1 de octubre de 2003): 327–45. http://dx.doi.org/10.1007/s10208-002-0062-x.
Texto completoCondon, M., A. Iserles y S. P. Nørsett. "Differential equations with general highly oscillatory forcing terms". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, n.º 2161 (8 de enero de 2014): 20130490. http://dx.doi.org/10.1098/rspa.2013.0490.
Texto completoHerrmann, L. "Oscillatory Solutions of Some Autonomous Partial Differential Equations with a Parameter". Journal of Mathematical Sciences 236, n.º 3 (1 de diciembre de 2018): 367–75. http://dx.doi.org/10.1007/s10958-018-4117-1.
Texto completoChartier, Philippe, Joseba Makazaga, Ander Murua y Gilles Vilmart. "Multi-revolution composition methods for highly oscillatory differential equations". Numerische Mathematik 128, n.º 1 (17 de enero de 2014): 167–92. http://dx.doi.org/10.1007/s00211-013-0602-0.
Texto completoTesis sobre el tema "Autonomous and highly oscillatory differential equations"
Bouchereau, Maxime. "Modélisation de phénomènes hautement oscillants par réseaux de neurones". Electronic Thesis or Diss., Université de Rennes (2023-....), 2024. http://www.theses.fr/2024URENS034.
Texto completoThis thesis focuses on the application of Machine Learning to the study of highly oscillatory differential equations. More precisely, we are interested in an approach to accurately approximate the solution of a differential equation with the least amount of computations, using neural networks. First, the autonomous case is studied, where the proper- ties of backward analysis and neural networks are used to enhance existing numerical methods. Then, a generalization to the strongly oscillating case is proposed to improve a specific first-order numerical scheme tailored to this scenario. Subsequently, neural networks are employed to replace the necessary pre- computations for implementing uniformly ac- curate numerical methods to approximate so- lutions of strongly oscillating equations. This can be done either by building upon the work done for the autonomous case or by using a neural network structure that directly incorporates the equation’s structure
Khanamiryan, Marianna. "Numerical methods for systems of highly oscillatory ordinary differential equations". Thesis, University of Cambridge, 2010. https://www.repository.cam.ac.uk/handle/1810/226323.
Texto completoKanat, Bengi Tanoğlu Gamze. "Numerical Solution of Highly Oscillatory Differential Equations By Magnus Series Method/". [s.l.]: [s.n.], 2006. http://library.iyte.edu.tr/tezler/master/matematik/T000572.pdf.
Texto completoBréhier, Charles-Edouard. "Numerical analysis of highly oscillatory Stochastic PDEs". Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2012. http://tel.archives-ouvertes.fr/tel-00824693.
Texto completoLibros sobre el tema "Autonomous and highly oscillatory differential equations"
Wu, Xinyuan y Bin Wang. Geometric Integrators for Differential Equations with Highly Oscillatory Solutions. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0147-7.
Texto completoSchütte, Christof. A quasiresonant smoothing algorithm for solving large highly oscillatory differential equations from quantum chemistry. Aachen: Verlag Shaker, 1994.
Buscar texto completoBin, Wang y Xinyuan Wu. Geometric Integrators for Differential Equations with Highly Oscillatory Solutions. Springer Singapore Pte. Limited, 2021.
Buscar texto completoBin, Wang y Xinyuan Wu. Geometric Integrators for Differential Equations with Highly Oscillatory Solutions. Springer, 2022.
Buscar texto completoCapítulos de libros sobre el tema "Autonomous and highly oscillatory differential equations"
Hairer, Ernst, Gerhard Wanner y Christian Lubich. "Highly Oscillatory Differential Equations". En Springer Series in Computational Mathematics, 407–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-05018-7_13.
Texto completoWu, Xinyuan, Xiong You y Bin Wang. "Effective Methods for Highly Oscillatory Second-Order Nonlinear Differential Equations". En Structure-Preserving Algorithms for Oscillatory Differential Equations, 185–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35338-3_8.
Texto completoLe Bris, Claude, Frédéric Legoll y Alexei Lozinski. "MsFEM à la Crouzeix-Raviart for Highly Oscillatory Elliptic Problems". En Partial Differential Equations: Theory, Control and Approximation, 265–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41401-5_11.
Texto completoWu, Xinyuan, Kai Liu y Wei Shi. "Improved Filon-Type Asymptotic Methods for Highly Oscillatory Differential Equations". En Structure-Preserving Algorithms for Oscillatory Differential Equations II, 53–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48156-1_3.
Texto completoWu, Xinyuan, Kai Liu y Wei Shi. "Error Analysis of Explicit TSERKN Methods for Highly Oscillatory Systems". En Structure-Preserving Algorithms for Oscillatory Differential Equations II, 175–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48156-1_8.
Texto completoWu, Xinyuan y Bin Wang. "Symplectic Approximations for Efficiently Solving Semilinear KG Equations". En Geometric Integrators for Differential Equations with Highly Oscillatory Solutions, 351–91. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0147-7_11.
Texto completoWu, Xinyuan, Kai Liu y Wei Shi. "Highly Accurate Explicit Symplectic ERKN Methods for Multi-frequency Oscillatory Hamiltonian Systems". En Structure-Preserving Algorithms for Oscillatory Differential Equations II, 193–209. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48156-1_9.
Texto completoWu, Xinyuan y Bin Wang. "Energy-Preserving Schemes for High-Dimensional Nonlinear KG Equations". En Geometric Integrators for Differential Equations with Highly Oscillatory Solutions, 263–97. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0147-7_9.
Texto completoWu, Xinyuan y Bin Wang. "Linearly-Fitted Conservative (Dissipative) Schemes for Nonlinear Wave Equations". En Geometric Integrators for Differential Equations with Highly Oscillatory Solutions, 235–61. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0147-7_8.
Texto completoBensoussan, Alain. "Homogenization for Non Linear Elliptic Equations with Random Highly Oscillatory Coefficients". En Partial Differential Equations and the Calculus of Variations, 93–133. Boston, MA: Birkhäuser Boston, 1989. http://dx.doi.org/10.1007/978-1-4684-9196-8_5.
Texto completoActas de conferencias sobre el tema "Autonomous and highly oscillatory differential equations"
Kuo, Chi-Wei y C. Steve Suh. "On Controlling Non-Autonomous Time-Delay Feedback Systems". En ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-51128.
Texto completoFeng, Dehua, Frederick Ferguson, Yang Gao y Xinru Niu. "Investigating the Start-Up Structures and Their Evolution Within an Under-Expanded Jet Flows". En ASME 2023 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/imece2023-113767.
Texto completo